前言
前面的博客介绍过使用dlib进行人脸检测、比对、检测特征点等等操作。
python dlib学习(一):人脸检测
python dlib学习(二):人脸特征点标定
python dlib学习(五):比对人脸
这次再将那些操作综合一下,进行人脸聚类。识别图片中的人脸,并分类。这里使用的是聚类,属于无监督学习。这里对每个人脸的区分与比对人脸中原理相同,将人脸映射到128D的空间中,计算彼此之间的距离。距离近的视作一个人,距离远的视作不是一个人,而判定的标准阈值由自己选定,通常是0.6。
目录结构
- faces文件夹保存测试图片;
- model文件夹保存模型文件,也可以自己训练,我偷懒使用了官方提供的;
- output文件夹中存放输出结果;
- 源码直接放在根目录。
程序
# coding: utf-8
"""
@author: xhb
"""
import sys
import os
import dlib
import glob
import cv2
# 指定路径
current_path = os.getcwd()
model_path = current_path + '/model/'
shape_predictor_model = model_path + '/shape_predictor_5_face_landmarks.dat'
face_rec_model = model_path + '/dlib_face_recognition_resnet_model_v1.dat'
face_folder = current_path + '/faces/'
output_folder = current_path + '/output/'
# 导入模型
detector = dlib.get_frontal_face_detector()
shape_detector = dlib.shape_predictor(shape_predictor_model)
face_recognizer = dlib.face_recognition_model_v1(face_rec_model)
# 为后面操作方便,建了几个列表
descriptors = []
images = []
# 遍历faces文件夹中所有的图片
for f in glob.glob(os.path.join(face_folder, "*.jpg")):
print('Processing file:{}'.format(f))
# 读取图片
img = cv2.imread(f)
# 转换到rgb颜色空间
img2 = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# 检测人脸
dets = detector(img2, 1)
print("Number of faces detected: {}".format(len(dets)))
# 遍历所有的人脸
for index, face in enumerate(dets):
# 检测人脸特征点
shape = shape_detector(img2, face)
# 投影到128D
face_descriptor = face_recognizer.compute_face_descriptor(img2, shape)
# 保存相关信息
descriptors.append(face_descriptor)
images.append((img2, shape))
# 聚类
labels = dlib.chinese_whispers_clustering(descriptors, 0.5)
print("labels: {}".format(labels))
num_classes = len(set(labels))
print("Number of clusters: {}".format(num_classes))
# 为了方便操作,用字典类型保存
face_dict = {}
for i in range(num_classes):
face_dict[i] = []
# print face_dict
for i in range(len(labels)):
face_dict[labels[i]].append(images[i])
# print face_dict.keys()
# 遍历字典,保存结果
for key in face_dict.keys():
file_dir = os.path.join(output_folder, str(key))
if not os.path.isdir(file_dir):
os.makedirs(file_dir)
for index, (image, shape) in enumerate(face_dict[key]):
file_path = os.path.join(file_dir, 'face_' + str(index))
print file_path
dlib.save_face_chip(image, shape, file_path, size=150, padding=0.25)
程序很简单,不做赘述。
结果
后记
dlib作为开源库,为我们提供了很方便的api工具,可以实现许多很酷的功能。当然那些功能也可以自己实现。不管怎样,都很有趣吧!