1. 非齐次线性方程组有解的充要条件是常数项向量可由系数矩阵列向量组线性表出或增广矩阵的秩等于系数矩阵的秩;
非齐次线性方程组的导出组的概念
2. 非齐次方程组解的性质
3. 非齐次方程组的任一解可表达为其某个特解与导出组的某一解之和
4. 非齐次方程组的通解可由其任一特解与其导出组的基础解系来表达
1. 非齐次线性方程组有解的充要条件是常数项向量可由系数矩阵列向量组线性表出或增广矩阵的秩等于系数矩阵的秩;
非齐次线性方程组的导出组的概念
2. 非齐次方程组解的性质
3. 非齐次方程组的任一解可表达为其某个特解与导出组的某一解之和
4. 非齐次方程组的通解可由其任一特解与其导出组的基础解系来表达