线性代数学习笔记——第五十四讲——非齐次方程组解的性质

本文详细阐述了非齐次线性方程组有解的充要条件,包括常数项向量的线性表出与矩阵秩的关系,以及非齐次方程组解的性质,指出任一解可表达为特解与导出组解之和,并解释了通解的表达方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

1. 非齐次线性方程组有解的充要条件是常数项向量可由系数矩阵列向量组线性表出或增广矩阵的秩等于系数矩阵的秩;

非齐次线性方程组的导出组的概念

 

2. 非齐次方程组解的性质

 

3.  非齐次方程组的任一解可表达为其某个特解与导出组的某一解之和

 

4. 非齐次方程组的通解可由其任一特解与其导出组的基础解系来表达

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值