非齐次线性方程组的特解的求法

非齐次线性方程组的特解可以通过以下方法求取:

1. 代入法

  • 步骤
    1. 将方程组写为简化形式,选择一个方程表示一个变量。
    2. 将该变量代入其他方程,逐步解出其他变量。
  • 例子: 对于方程组: x_1 + 2x_2 = 5 \quad (1) \\ 3x_1 + 4x_2 = 11 \quad (2)​,联立(1)(2)求出x_1,然后代入 (2) 解出x_2​。

2. 消元法

  • 步骤

    1. 将方程组写成增广矩阵的形式 [A∣b]。
    2. 使用高斯消元法将矩阵化为行简化阶梯形。
    3. 从行简化形式中直接解出特解。
  • 例子: 对于同样的方程组,构造增广矩阵:

    \begin{pmatrix} 1 & 2 & | & 5 \\ 3 & 4 & | & 11 \end{pmatrix}

    使用消元法得到简化矩阵,然后解出特解。

3. 矩阵求逆法

  • 步骤

    1. 如果系数矩阵 A 是可逆的,可以直接用公式 x = A^{-1}b 找特解。
    2. 计算 A^{-1}  后与 b 相乘。
  • 例子: 对于方程组:

    Ax = b 其中,A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}   ,    b = \begin{pmatrix} 5 \\ 11 \end{pmatrix}
  • 计算 A^{-1}并用公式找到特解 x。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤劳的进取家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值