非齐次线性方程组的特解可以通过以下方法求取:
1. 代入法
- 步骤:
- 将方程组写为简化形式,选择一个方程表示一个变量。
- 将该变量代入其他方程,逐步解出其他变量。
- 例子: 对于方程组:
,联立(1)(2)求出
,然后代入 (2) 解出
。
2. 消元法
-
步骤:
- 将方程组写成增广矩阵的形式 [A∣b]。
- 使用高斯消元法将矩阵化为行简化阶梯形。
- 从行简化形式中直接解出特解。
-
例子: 对于同样的方程组,构造增广矩阵:
使用消元法得到简化矩阵,然后解出特解。
3. 矩阵求逆法
-
步骤:
- 如果系数矩阵 A 是可逆的,可以直接用公式
找特解。
- 计算
后与 b 相乘。
- 如果系数矩阵 A 是可逆的,可以直接用公式
-
例子: 对于方程组:
其中,
,
-
计算
并用公式找到特解 x。