计算机视觉——相机标定

本文深入探讨了相机标定的重要性,从针孔相机模型开始,介绍了相机标定的基本概念、传统方法以及张正友标定法。详细阐述了相机标定的步骤,包括打印棋盘格、拍摄不同角度照片、提取角点、参数估计以及畸变校正。通过实验测试确保标定的准确性和精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一:针孔相机模型

二:相机标定 

2.1相机标定介绍

2.2传统相机标定

2.3张正友标定介绍

2.4相机标定步骤

三:实验测试


一:针孔相机模型

在针孔照相机模型中,在光线投影到图像平面之前,从唯一一个点经过,也就是照相机中心 C。根据相似三角形可以得出P点坐标和在投影面上坐标的关系

将坐标系改到像平面左下角时可以得到以下数据

照相机可以分解成如下图所示,我们需要恢复内参数K和照相机的位置t和姿势R,矩阵分块操作成为因子分解。我们将使用RQ因子分解来进行矩阵因子分解。

from numpy import array, dot, hstack

import camera

K = array([[1000,0,500],[0,1000,300],[0,0,1]])
tmp = camera.rotation_matrix([0,0,1])[:3,:3]
Rt = hstack((tmp,array([[50],[40],[30]])))
cam = camera.Camera(dot(K,Rt))

print(K,Rt)
print(cam.factor())

二:相机标定 

2.1相机标定介绍

在图像测量过程以及机器视觉应用中,为确定空间物体表面某点的三维几何位置与其在图像中对应点之间的相互关系,必须建立相机成像的几何模型,这些几何模型参数就是相机参数。在大多数条件下这些参数必须通过实验与计算才能得到,这个求解参数(内参、外参、畸变参数)的过程就称之为相机标定。

畸变

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值