目录
一:针孔相机模型
在针孔照相机模型中,在光线投影到图像平面之前,从唯一一个点经过,也就是照相机中心 C。根据相似三角形可以得出P点坐标和在投影面上坐标的关系
将坐标系改到像平面左下角时可以得到以下数据
照相机可以分解成如下图所示,我们需要恢复内参数K和照相机的位置t和姿势R,矩阵分块操作成为因子分解。我们将使用RQ因子分解来进行矩阵因子分解。
from numpy import array, dot, hstack
import camera
K = array([[1000,0,500],[0,1000,300],[0,0,1]])
tmp = camera.rotation_matrix([0,0,1])[:3,:3]
Rt = hstack((tmp,array([[50],[40],[30]])))
cam = camera.Camera(dot(K,Rt))
print(K,Rt)
print(cam.factor())
二:相机标定
2.1相机标定介绍
在图像测量过程以及机器视觉应用中,为确定空间物体表面某点的三维几何位置与其在图像中对应点之间的相互关系,必须建立相机成像的几何模型,这些几何模型参数就是相机参数。在大多数条件下这些参数必须通过实验与计算才能得到,这个求解参数(内参、外参、畸变参数)的过程就称之为相机标定。
畸变