LLM Agent提效进阶1:反思工作流——91%精度大超GPT-4 24%

在我们之前的文章中, 我们深入探讨了提升LLM性能的重要工具:Agents workflow,其中包含了四种精妙设计的Agent工作流模式:反思、工具使用、规划和多智能体协作。这些工作模式对于AI系统的设计至关重要,Andrew.NgAgentic Design Patterns Part 2: Reflection中对此也有简单描述。让我们深入研究一下反思这一引人注目的Agent工作流设计模式。

1. 相关研究

反思依赖于LLM对自己之前提出的工作进行反思并提出改进的方法,有三篇典型论文详细描述了这种模式,我们先来看一下。

2. Self-Refine

顾名思义,它是一种自我精炼的LLM优化技术,使用单一的LLM作为生成器、改进器和反馈器。该方法通过迭代过程生成初始输出,然后让同一LLM为其提供反馈,并使用这些反馈进一步改进输出。论文展示了SELF-REFINE在多个任务上的有效性,包括对话响应生成、数学推理、代码生成等,使用最先进的LLM(如GPT-3.5和GPT-4)进行评估。Self-Refine在所有评估任务上都优于使用相同LLM进行传统一步生成的方法,平均提高了约20%的任务性能。 以ChatGPT编写Python来举个例子

3. CRITIC

作者提出一个名为CRITIC的框架,允许大型语言模型(LLMs)通过与外部工具的交互来验证和改进自己的输出,类似于人类与工具的互动,该框架已经开源github.com/microsoft/P…

  • CRITIC通过与搜索引擎、代码解释器等工具的交互,评估初始输出的某些方面,并根据验证过程中获得的反馈来修正输出。
  • 该过程可以重复进行,以确保持续的输出改进。
  • 通过在自由形式问答、数学程序合成和毒性降低等任务上的全面评估,证明了CRITIC能够一致地提高LLMs的性能。

在数学评估的各个数据集上获得了最高的评分。

我会在后续的文章中尝试分析一下这个框架CRITIC,我们看看它是怎么进行调用工具验证,评估,纠正输出,再循环的。

4. Reflexion

作者指出最近的一些工作诸如ReAct、SayCan、Toolformer、HuggingGPT以及WebGPT证明了使用基于LLM构建的自动化决策Agent是可行的,但是这些方法大多依赖于在当前情景中的例子(in-context example)来指导LLM生成内容,因为用梯度下降的强化学习需要很多计算和时间。简单说,就是他们依赖的只是短期记忆。所以作者提出一种新的叫做Reflexion的框架,它通过使用语言强化学习(verb reinforcement)来帮助Agent从之前的失败中学习。Reflexion会把环境的二进制或量化的反馈转换成文字描述,作为下次迭代中的额外信息。这种自我反思式的反馈就像是个语意上的梯度信号来提供给Agent具体的优化方向,让Agent知道怎样改正错误,这样就能更好地完成任务了。就像人类通过反复练习和反思来快速掌握复杂技能一样。具体的工作流程如下图,Reflexion的源码已经开源,我们在下一篇文章中安装该框架进行分析。 从上图看出Reflexion框架利用三个不同的模型:执行者(Actor)、评估者(Evaluator)和自我反思模型(Self-Reflection)。

  • 执行者Actor基于状态观察生成文本和动作;
  • 评估者对执行者产生的输出计算奖励分数;
  • 自我反思模型生成口头自我反思提示以协助执行者自我改进。
  • 该过程使用短期和长期记忆,其中轨迹历史作为短期记忆,而自我反思模型的输出存储在长期记忆中。

Reflexion在AlfWorld任务上提高了22%的决策制定能力,在HotPotQA推理问题上提高了20%,在HumanEval编程任务上提高了11%。比如HumanEval(PY)上比GPT-4的80.1高初10个点,到达91.0。

总结

本文深入探讨了LLM(大语言模型)的反思工作流,通过介绍Self-Refine、CRITIC和Reflexion三种典型的优化技术,展示了LLM在自我反馈、工具交互和语言强化学习中的显著性能提升。这些方法不仅展示了AI系统在复杂任务中自我改进的潜力,还强调了自我反思在机器学习中的重要性。反思工作流的核心在于通过迭代反馈和自我修正,使模型能够不断优化其输出,就像人类通过经验和反思不断进步一样。 接下来,我们会从代码层面深度解析本文所提到reflexion框架,从安装,prompt设计到代码流程完全剖析。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

全套 《LLM大模型入门+进阶学习资源包↓↓↓ 获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值