环境搭建
系统环境
需要Nvidia显卡,至少8G显存,且专用显存与共享显存之和大于20G
建议将非安装版的环境文件都放到非系统盘,方便重装或移植
以Windows11为例,非安装环境文件都放在 E 盘下
设置自定义Path文件夹
创建 E:\mypath
文件夹,将其添加进用户环境变量Path
中,之后会用
CMake
下载 CMake 的 Windows x64 ZIP 对应文件:Download CMake
解压到E:\environment\cmake
将E:\environment\cmake\bin
添加到用户环境变量Path
中
C++编译
下载 Community 版 Visual Studio
:Visual Studio 2022 IDE
运行后选择桌面c++板块内容安装,若中途取消安装了,可以在开始菜单下栏的新增项目(或推荐项目)中找到该安装程序
这里只需要c++的编译环境,把除了C++板块以外的安装项目全部取消勾选(该板块自动勾选系统SDK等其他相关组件,不要取消勾选)
python环境
python安装
下载新版Anaconda安装程序:Download Anaconda
安装过程中将添加到环境变量等选项全部打勾
用uv管理pip包
将uv所有文件装至 E:\uv
下
安装
添加 python 3.11
独立文件
uv python install 3.11
uv python list # 查看是否安装成功
Git环境
安装Git:Git - 安装 Git (git-scm.com)
Nvidia CUDA 工具包
安装12.1版:CUDA Toolkit 12.1 Update 1 Downloads | NVIDIA Developer
注意运行安装程序后在安装选单界面只安装CUDA驱动和工具包,不选其他显卡驱动和Nsignt
安装完后重启电脑
输入指令查看信息
nvidia-smi # 看当前驱动最大可支持的CUDA版本
nvcc -V # 看当前安装的CUDA运行时版本
部署训练框架
部署LLaMA-Factory
拉取源码
在 E:\AI
文件夹下拉取 LLaMA-Factory.git
,注意挂代理加速
git config --global http.https://github.com.proxy socks5://127.0.0.1:1080 # 对github设置socks5代理
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
uv venv -p 3.11
uv pip install -e ".[torch,metrics]"
安装flash-attention训练加速
在当前目录(LLaMA-Factory)下继续操作
uv pip install https://github.com/bdashore3/flash-attention/releases/download/v2.6.3/flash_attn-2.6.3+cu123torch2.3.1cxx11abiFALSE-cp311-cp311-win_amd64.whl
如果下载慢可以在url前加https://ghproxy.cn/
用国内节点下载
安装hqq用于量化
在当前目录(LLaMA-Factory)下继续操作
uv pip install hqq
[!tip] 若提示UTF8相关报错解决
开启使用UTF-8提供全球语言支持
打开控制面板,更改系统区域设置,勾选
Beta 版:使用Unicode UTF-8 提供全球语言支持(U)
,这个在安装hqq包时用到
重启电脑,安装完后可将该项取消勾选
安装与当前cuda适配的pytorch
在当前目录(LLaMA-Factory)下继续操作
全局代理加速的情况:
参考 Start Locally | PyTorch
以下直接贴出代码
uv pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
没有全局代理加速的情况:
先用代理加速去下载torch-2.3.1+cu121-cp311-cp311-win_amd64.whl
uv pip install .\torch-2.3.1+cu121-cp311-cp311-win_amd64.whl
uv pip install torchvision==0.18.1+cu121 torchaudio==2.3.1+cu121 -f https://download.pytorch.org/whl/torch_stable.html
配置之前保存的参数
在当前目录(LLaMA-Factory)下继续操作
修改 .\data\dataset_info.json
文件,在开头花括号后加入
"alpaca_dataset": {
"file_name": "alpaca_dataset.json"
},
然后将自定数据集名称命名为 alpaca_dataset.json
放入 .\data
下
将之前保存的.yaml
参数配置文件放入 .\config
下
添加环境变量
在 E:\mypath
文件夹内新建 llamafactory-cli.bat
文件,文本编辑器打开输入以下内容并保存
@echo off
cd /d E:\AI\LLaMA-Factory
.\.venv\Scripts\llamafactory-cli.exe %*
新开一个终端,输入以下指令开启web界面
llamafactory-cli webui
下载基础模型
使用带 -Chat
或 -Instruct
标签的模型作为基础模型
以 Qwen2.5-7B-Instruct
为例
到魔搭社区点下载模型:通义千问2.5-7B-Instruct · 模型库 (modelscope.cn)
按说明下载模型文件到 E:\AI\models
中(注意其中大文件下载的进度条不是实时显示,每隔一段进度才显示一次,并不是卡住不动)
模型微调
在 LLaMA-Factory
的Web界面中操作
语言选 zh
滑到最下面找到配置路径
下拉菜单选择之前保存的配置
点击载入训练参数
按钮
滑到最上面
模型名称 Qwen2.5-7B-Instruct
填写本地模型路径
:E:\AI\models\Qwen2.5-7B-Instruct
展开高级设置
量化等级设置4
,量化方法选hqq
,加速方式选flashattn2
数据集可加载多个
可选调中间位置训练轮数
和最大样本数
,最大样本数
即要训练用的最大样本数量,点击预览数据集
按钮可查看当前数据集数量
,如果最大样本数
小于当前数据集数量
,则按最大样本数
作为实际训练样本数,多出的样本不用于训练
计算类型
选fp16
下面输出目录
按需选填
点击开始
进行训练
训练结束后查看损失图
判断训练效果,损失值
越小且稳定即效果好
在终端 Ctrl+C
退出Web服务
微调后的模型使用
以ollama调用为例
部署ollama
设置用户环境变量:
OLLAMA_ORIGINS *
OLLAMA_MODELS E:\AI\ollama_models
下载并安装:Ollama
安装后重启电脑
拉取模型
ollama pull qwen2.5:7b
微调模型格式转换
部署llama.cpp
在 E:\AI
目录下
git clone https://github.com/ggerganov/llama.cpp.git
cd llama.cpp
uv venv -p 3.11
uv pip install -r .\requirements\requirements-convert_lora_to_gguf.txt --index-strategy unsafe-best-match
模型检查点转换为gguf
在 E:\AI\llama.cpp
目录下
.venv\Scripts\activate.ps1
# python ./convert_lora_to_gguf.py --base <basemodel> <loratrain>
python ./convert_lora_to_gguf.py --base "E:\AI\models\Qwen2.5-7B-Instruct" "E:\AI\LLaMA-Factory\saves\Qwen2.5-7B-Instruct\lora\train_xxx"
转换后的gguf文件会导出到<loratrain>
的路径下
部署微调模型
从ollama创建新模型
ollama 的 modelfile 模板:
# set the base model
FROM llama3:8b
# set custom parameter values
PARAMETER temperature 1
PARAMETER num_keep 24
PARAMETER stop <|start_header_id|>
PARAMETER stop <|end_header_id|>
PARAMETER stop <|eot_id|>
PARAMETER stop <|reserved_special_token
# set the model template
TEMPLATE """
{{ if .System }}<|start_header_id|>system<|end_header_id|>
{{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>
{{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>
{{ .Response }}<|eot_id|>
"""
# set the system message
SYSTEM You are llama3 from Meta, customized and hosted @ HY's Blog (https://blog.yanghong.dev).
# set Chinese lora support
ADAPTER /root/.ollama/models/lora/ggml-adapter-model.bin
将转换后的gguf文件剪切到 E:\models\mymodel
下,命名为 mymodel.gguf
在该目录下创建 mymodel.modelfile
,输入以下内容并保存
FROM qwen2.5:7b
SYSTEM """
(可选设置SYSTEM)
"""
ADAPTER .\mymodel.gguf
在ollama创建该模型
ollama create mymodel -f E:\models\mymodel\mymodel.modelfile
模型可以使用了~
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓