使用LLaMA-Factory训练LLM大模型并用ollama调用

环境搭建

系统环境

需要Nvidia显卡,至少8G显存,且专用显存与共享显存之和大于20G
建议将非安装版的环境文件都放到非系统盘,方便重装或移植
以Windows11为例,非安装环境文件都放在 E 盘下

设置自定义Path文件夹

创建 E:\mypath 文件夹,将其添加进用户环境变量Path中,之后会用

CMake

下载 CMake 的 Windows x64 ZIP 对应文件:Download CMake
解压到E:\environment\cmake
E:\environment\cmake\bin添加到用户环境变量Path

C++编译

下载 Community 版 Visual StudioVisual Studio 2022 IDE
运行后选择桌面c++板块内容安装,若中途取消安装了,可以在开始菜单下栏的新增项目(或推荐项目)中找到该安装程序
这里只需要c++的编译环境,把除了C++板块以外的安装项目全部取消勾选(该板块自动勾选系统SDK等其他相关组件,不要取消勾选)

python环境

python安装

下载新版Anaconda安装程序:Download Anaconda
安装过程中将添加到环境变量等选项全部打勾

用uv管理pip包

将uv所有文件装至 E:\uv

安装

添加 python 3.11 独立文件

uv python install 3.11
uv python list # 查看是否安装成功

Git环境

安装Git:Git - 安装 Git (git-scm.com)

Nvidia CUDA 工具包

安装12.1版:CUDA Toolkit 12.1 Update 1 Downloads | NVIDIA Developer
注意运行安装程序后在安装选单界面只安装CUDA驱动和工具包,不选其他显卡驱动和Nsignt
安装完后重启电脑
输入指令查看信息

nvidia-smi # 看当前驱动最大可支持的CUDA版本
nvcc -V # 看当前安装的CUDA运行时版本

部署训练框架

部署LLaMA-Factory

拉取源码

E:\AI 文件夹下拉取 LLaMA-Factory.git,注意挂代理加速

git config --global http.https://github.com.proxy socks5://127.0.0.1:1080 # 对github设置socks5代理
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
uv venv -p 3.11
uv pip install -e ".[torch,metrics]"

安装flash-attention训练加速

在当前目录(LLaMA-Factory)下继续操作

uv pip install https://github.com/bdashore3/flash-attention/releases/download/v2.6.3/flash_attn-2.6.3+cu123torch2.3.1cxx11abiFALSE-cp311-cp311-win_amd64.whl

如果下载慢可以在url前加https://ghproxy.cn/用国内节点下载

安装hqq用于量化

在当前目录(LLaMA-Factory)下继续操作

uv pip install hqq

[!tip] 若提示UTF8相关报错解决

开启使用UTF-8提供全球语言支持

打开控制面板,更改系统区域设置,勾选Beta 版:使用Unicode UTF-8 提供全球语言支持(U),这个在安装hqq包时用到
重启电脑,安装完后可将该项取消勾选

安装与当前cuda适配的pytorch

在当前目录(LLaMA-Factory)下继续操作
全局代理加速的情况:
参考 Start Locally | PyTorch
以下直接贴出代码

uv pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

没有全局代理加速的情况:
先用代理加速去下载torch-2.3.1+cu121-cp311-cp311-win_amd64.whl

uv pip install .\torch-2.3.1+cu121-cp311-cp311-win_amd64.whl
uv pip install torchvision==0.18.1+cu121 torchaudio==2.3.1+cu121 -f https://download.pytorch.org/whl/torch_stable.html

配置之前保存的参数

在当前目录(LLaMA-Factory)下继续操作
修改 .\data\dataset_info.json 文件,在开头花括号后加入

  "alpaca_dataset": {
    "file_name": "alpaca_dataset.json"
  },

然后将自定数据集名称命名为 alpaca_dataset.json 放入 .\data
将之前保存的.yaml参数配置文件放入 .\config

添加环境变量

E:\mypath 文件夹内新建 llamafactory-cli.bat 文件,文本编辑器打开输入以下内容并保存

@echo off
cd /d E:\AI\LLaMA-Factory
.\.venv\Scripts\llamafactory-cli.exe %*

新开一个终端,输入以下指令开启web界面

llamafactory-cli webui

下载基础模型

使用带 -Chat-Instruct 标签的模型作为基础模型
Qwen2.5-7B-Instruct 为例
到魔搭社区点下载模型:通义千问2.5-7B-Instruct · 模型库 (modelscope.cn)
按说明下载模型文件到 E:\AI\models 中(注意其中大文件下载的进度条不是实时显示,每隔一段进度才显示一次,并不是卡住不动)

模型微调

LLaMA-Factory 的Web界面中操作
语言选 zh
滑到最下面找到配置路径
下拉菜单选择之前保存的配置
点击载入训练参数按钮
滑到最上面
模型名称 Qwen2.5-7B-Instruct
填写本地模型路径E:\AI\models\Qwen2.5-7B-Instruct
展开高级设置
量化等级设置4,量化方法选hqq,加速方式选flashattn2
数据集可加载多个
可选调中间位置训练轮数最大样本数最大样本数即要训练用的最大样本数量,点击预览数据集按钮可查看当前数据集数量,如果最大样本数小于当前数据集数量,则按最大样本数作为实际训练样本数,多出的样本不用于训练
计算类型fp16
下面输出目录按需选填
点击开始进行训练
训练结束后查看损失图判断训练效果,损失值越小且稳定即效果好
在终端 Ctrl+C 退出Web服务

微调后的模型使用

以ollama调用为例

部署ollama

设置用户环境变量:

OLLAMA_ORIGINS			*
OLLAMA_MODELS			E:\AI\ollama_models

下载并安装:Ollama
安装后重启电脑

拉取模型

ollama pull qwen2.5:7b

微调模型格式转换

部署llama.cpp

E:\AI 目录下

git clone https://github.com/ggerganov/llama.cpp.git
cd llama.cpp
uv venv -p 3.11
uv pip install -r .\requirements\requirements-convert_lora_to_gguf.txt --index-strategy unsafe-best-match

模型检查点转换为gguf

E:\AI\llama.cpp 目录下

.venv\Scripts\activate.ps1
# python ./convert_lora_to_gguf.py --base <basemodel> <loratrain>
python ./convert_lora_to_gguf.py --base "E:\AI\models\Qwen2.5-7B-Instruct" "E:\AI\LLaMA-Factory\saves\Qwen2.5-7B-Instruct\lora\train_xxx"

转换后的gguf文件会导出到<loratrain>的路径下

部署微调模型

从ollama创建新模型

ollama 的 modelfile 模板:

# set the base model
FROM llama3:8b
 
# set custom parameter values
PARAMETER temperature 1
PARAMETER num_keep 24
PARAMETER stop <|start_header_id|>
PARAMETER stop <|end_header_id|>
PARAMETER stop <|eot_id|>
PARAMETER stop <|reserved_special_token
 
# set the model template
TEMPLATE """
{{ if .System }}<|start_header_id|>system<|end_header_id|>
{{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>
{{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>
{{ .Response }}<|eot_id|>
"""
 
# set the system message
SYSTEM You are llama3 from Meta, customized and hosted @ HY's Blog (https://blog.yanghong.dev).
# set Chinese lora support
ADAPTER /root/.ollama/models/lora/ggml-adapter-model.bin

将转换后的gguf文件剪切到 E:\models\mymodel 下,命名为 mymodel.gguf
在该目录下创建 mymodel.modelfile,输入以下内容并保存

FROM qwen2.5:7b

SYSTEM """
(可选设置SYSTEM)
"""

ADAPTER .\mymodel.gguf

在ollama创建该模型

ollama create mymodel -f E:\models\mymodel\mymodel.modelfile

模型可以使用了~

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

### 关于 LlamaFactory 量化交易平台的使用教程 LlamaFactory 是一种用于微调和优化大型语言模型(LLM)的工具集,虽然其主要功能集中在模型微调、量化以及转换等领域,但它也可以被间接应用于金融领域中的量化分析或交易策略开发。以下是关于如何利用 LlamaFactory 进行量化分析的相关说明: #### 工具环境准备 为了能够顺利运行 LlamaFactory 并完成量化操作,首先需要搭建合适的开发环境。这包括但不限于以下步骤: - **克隆 ollama 源码仓库**:通过命令 `git clone https://github.com/ollama/ollama.git` 下载项目源代码[^1]。 - **安装依赖库**:确保 Python 环境已配置完毕,并安装必要的第三方库,例如 bitsandbytes 和 transformers。可以通过 pip 命令来安装这些依赖项[^2]: ```bash pip install bitsandbytes transformers datasets accelerate ``` #### 数据预处理与加载 在构建任何有效的机器学习或者深度学习解决方案之前,数据的质量至关重要。对于量化投资而言,通常涉及大量的历史价格序列以及其他市场特征指标作为输入变量。 假设我们正在尝试预测某只股票未来几天内的涨跌幅情况,则可能需要收集如下几类信息: - 股票每日开盘价、收盘价、最高最低价位等基本信息; - 技术面因子比如移动平均线(MA),相对强弱指数(RSI)等等; - 宏观经济新闻舆情情绪分值; 上述提到的各种维度的数据都可以整理成结构化的表格形式存储起来供后续建模阶段调用。 #### 模型选择与训练设置 考虑到计算资源限制,在实际应用过程中往往倾向于采用较低精度但效率更高的方案来进行推理运算。因此推荐使用 QLoRA 方法以减少内存占用并加快速度的同时保持较好的性能表现: ```python from peft import get_peft_model, LoraConfig, TaskType lora_config = LoraConfig( r=16, lora_alpha=32, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none", task_type=TaskType.CAUSAL_LM ) model = get_peft_model(model, lora_config) ``` 此部分展示了如何定义 LoRA 参数并通过 PEFT 库获取适配后的目标模型实例对象。 #### 导出GGUF格式文件 当完成了整个训练流程之后,最后一步就是把得到的最佳权重参数保存下来以便部署到其他平台上去使用Ollama 支持导入 GGML/GGUF 类型的二进制文件格式,所以有必要将其转化为相应的标准输出形式: ```python import torch from pathlib import Path output_dir = "./outputs" Path(output_dir).mkdir(parents=True, exist_ok=True) torch.save({ 'state_dict': model.state_dict(), }, f"{output_dir}/best_checkpoint.pth") # Convert to gguf format here... ``` 以上脚本片段示范了怎样将 PyTorch 中的状态字典序列化至磁盘上指定位置,并预留出了进一步实施具体转化逻辑的空间。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值