前言
李彦宏说说:开源大模型不如闭源,但是阿里好像不这么想。
Qwen大模型表示性能和开源,我都要了!最近,被国内外网友催更的Qwen大模型发布了V2版本。
今天就一起看看这次的升级重点,并手把手教你如何自己部署一套Qwen2,然后大家就可以自己开始使用探索了。
Qwen2
就在6月7日,阿里云重磅发布全球性能最强的开源模型Qwen2-72B,从官方发布的技术Blog中可以看到,Qwen2-70B在十多个权威测评榜单中,得分都超过了Llama3-70B,也超过文心4.0、豆包pro、混元pro等众多中国闭源大模型。
可以说,目前Qwen已经成为除Llama外,全球开发者的另一主流选项。所有人均可在魔搭社区和Hugging Face免费下载通义千问最新开源模型。
Qwen2这次大幅提升了代码、数学、推理、指令遵循、多语言理解等能力,这里总结几个 qwen2突出的方面:
代码和数学
在这方面Qwen的表现一直不错,这次qwen2更近一步,刷新历史成绩。
长文本
在长文本方面,Qwen2-72B-Instruct能够完美处理128k上下文长度内的信息
安全
在安全方面,根据给出的测试数据,Qwen2-72B-Instruct模型在安全性方面与GPT-4的表现相当。
部署教程
开源大模型最大的好处,就是可以自己部署来玩,那我就来实际部署Qwen2运行一下。
1、本地部署
首先我们先来看本地部署,有条件的话当然是要本地跑一跑啦。开始前,首先要确认一下自己的硬件配置,根据自己的情况来选择合适的模型。
本地运行我选择的工具是Ollama,之前我的视频中也给大家介绍这款工具,基本下载安装很简单可以参考一下。
接下来我们准备下载qwen2模型,在ollama的models里直接搜qwen就能找到Qwen2的模型。
这里我们进入qwen2之后,可以看到有很多的相关说明,包括模型的不同版本选择,还有一些参考的测评分数。我的机器只能选择7B的模型,这里选7B,然后复制命令
ollama run qwen2:7b
再打开一个终端直接运行即可。
之前的发ollama文章的时候API功能没有说明,这里给大家介绍一下。最新的版的Ollama启动模型后会自动带有API服务,可以通过以下指令访问刚刚部署好的qwen2。
curl <http://localhost:11434/api/generate> -d '{
"model": "qwen2:7b",
"prompt":"Why is the sky blue?","stream":"false"
}'
使用curl或者API工具的时候,记得加上stream:false的参数来关闭流式返回。
如果想通过代码使用API的,可以使用Ollama推出的SDK,比如Ollama.js,使用也很简单,先通过npm安装,然后就可以在代码中使用了。
npm i ollama
简单试了一下,我本地的16G内存可以跑得动,但速度确实就一般了。对于一般人来说,自己在本地组大显存比较麻烦,所以我也给大家带来一套云上部署的参考,毕竟云上资源的优势就是随用随启。
2、云上部署
云上部署的话,首推是用阿里云提供的大模型服务平台百炼,这样你就不需要再从头一点点的搞配置了。
进入百炼平台,选择模型中心-模型部署-部署新模型,之后选择合适的模型进行部署。因为目前qwen2模型还没有上来,这里就先用千问max为例,选择后付费的模式。
部署所需的费用,点击确认后,系统将开始部署,系统将在部署成功后开始计费。对于部署模型的收费情况,可以参考这里。
https://help.aliyun.com/document_detail/2586397.html
等待部署完成后,我们就可以使用自己的在线大模型了。
其实如果是想调用Qwen2的能力,最建议的方式是通过API来使用,这是最经济的方式,可以省下部署资源的费用。
本地和云上对比
这里我将本地部署和云上部署做一个简要的对比。
本地部署优势:可控性强、如果已经有了基础硬件,那么没有成本。但是需要有一些动手能力。
云上部署优势:云上使用首推的是使用API,第一如果考虑综合的硬件投入,实际成本是更低的。第二不用考虑环境和配置,上手容易。当然对应的缺点是需要公网。
举个例子,Qwen-72B开源模型、每月1亿token用量为例,在阿里云百炼上直接调用API每月仅需600元,如果是自己本地部署,前期投入大家自己心里有数。
如果企业级的选择,尤其是初创企业,那么更建议从云上开始,毕竟自己的业务才是核心。
Qwen2实测反馈
此前,Qwen1.5就在各大权威榜单和大模型竞技场中,超越了国内几乎所有大模型,无论是开源还是闭源。而这次发布的Qwen2,据说性能又有大幅提升,其中,Qwen2-72B的性能尤其优越。本次发布的所有模型都能够支持30多国语言,除了中文、英文之外,还增加了27种语言相关的高质量数据,提升了模型的多语言能力。
Qwen2所有尺寸模型都使用了GQA(分组查询注意力)机制,以便让用户体验到GQA带来的推理加速和显存占用降低的优势。Qwen2还增大了上下文长度支持,Qwen2-72B-Instruct能够完美处理128k上下文长度内的信息抽取任务。
国内外的开发者都热情高涨,更有网友实测Qwen2在医学术语、翻译方面更准确,并且编程和推理能力更强
海外的评价这么高,那么我们也来自己试一试,这里为了好看我用了在线的qwen模型。
首先是文本生成的能力。
不得不说,这段确实很有《红楼梦》的味道,妥妥的满分作文。
再来试试在文本方面的创造力
Qwen2不但写出了诗,还对诗的含义进行了解释。
自从网上弱智吧的测试火了之后,「弱智吧」就成了检测大模型能力的一项重要指标。下面测试一下Qwen2会不会被弱智吧的问题给绕进去。
从上面图片可以看出来,Qwen2不但给出了正确答案,还给出很棒的建议。
总结
随着美国对于大模型开源项目的限制加码,llama系列未来还能否随心所欲地使用存在疑问,但最近国产大模型的不断发展也让我们看到了希望,尤其是这次Qwen2的发布,似乎更让我们找到了答案。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓