LIF模型及其变种 Training Spiking Deep Networks for Neuromorphic Hardware

标准LIF和软化LIF

我们要计算原始网络的计算效率
图像中有两个主要的计算来源:计算神经元和计算连接。
每秒浮点计算(floating-point operations per second)
突触的计算需要消耗大部分的能量

这些方法为将传统的人工神经网络翻译为基于尖峰的神经形态硬件提供了新途径。我们提供了一些证据,表明这种实现比ANN的实现更节能。虽然我们的分析只考虑了静态图像分类,但我们期望在处理动态输入(例如视频)时,SNN的实际效率将变得明显。这是因为SNN本质上是动态的,并且需要采取许多模拟步骤来处理每个图像。这使得它们最适合处理动态序列,在动态序列中,视频序列中的相邻帧彼此相似,并且网络在输入突然改变后不必花时间不断地进行“复位”。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值