Direct Training for Spiking Neural Networks: Faster, Larger, Better

本文提出了一种直接训练深层脉冲神经网络(SNN)的算法,通过神经元正则化和精确的LIF迭代模型,实现了训练速度的显著提升和网络规模的扩大。实验表明,这种方法在保持高准确率的同时,显著减少了模拟步数,降低了功耗,适用于资源受限的场景。
摘要由CSDN通过智能技术生成

摘要

我们提出一种神经元正则化技术去调整神经元分立,而且发展了一种直接的训练算法对于深层SNN.
通过缩小速率编码窗口和转换LIF模型到精确的迭代版本,我们提出了基于pytorch版本的手段去训练深度SNN,提高了数十倍的速度。

准确的LIF迭代模型

原来的LIF模型是这样的变化模式
在这里插入图片描述
其中 u u u是膜电压, t t t代表时间, I I I代表外部输入, u r e s e t u_{reset} ureset

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在《Learning Spatiotemporally Encoded Pattern Transformations in Structured Spiking Neural Networks》这篇论文中,关于兴奋抑制的部分主要是针对结构化脉冲神经网络(structured spiking neural networks)中的兴奋和抑制机制进行研究和探讨。 在神经网络中,兴奋抑制机制是一种常见的神经元间相互作用方式。兴奋(excitation)表示一个神经元的活动会激发或增强其他神经元的活动,而抑制(inhibition)则表示一个神经元的活动会抑制或减弱其他神经元的活动。 在这篇论文中,作者提出了一种基于结构化脉冲神经网络的模型,该模型通过学习时空编码模式转换,实现了对输入模式的编码和转换。在这个模型中,兴奋抑制机制被用来调节神经元之间的相互作用,以实现输入模式的动态转换和编码。 具体来说,兴奋抑制机制在这个模型中起到了以下几个作用: 1. 提供了一种动态调节神经元活动的方式,通过增强或减弱神经元之间的相互作用,来实现输入模式的转换和编码。 2. 控制神经元的激活水平,使得模型能够对输入模式进行适当的响应和处理。 3. 平衡神经元之间的竞争关系,以确保神经网络能够同时处理多个输入模式。 总之,兴奋抑制机制在这篇论文中被用来实现结构化脉冲神经网络对输入模式的编码和转换,并且通过动态调节神经元之间的相互作用,实现了模型对输入模式的动态处理和响应能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值