基于Kaggle学习MONAI(一)

         Kaggle是一个举办机器学习竞赛、托管数据库、编写和分享代码的平台,除了丰富的人工智能应用案例和数据集之外,还提供免费的GPU资源,深受广大学生党的喜爱。MONAI(Medical Open Network for AI)是NVIDIA与伦敦国王学院(King’s College London)于联合推出的开源医学成像领域AI框架,具有功能强大的API,内嵌主流的深度学习模型,方便深度学习工程师复现最新算法效果、灵活搭建部署医学成像领域的人工智能应用。MONAI基于pytorch框架开发,专注医学影像领域的应用,进一步扩展了pytorch框架的应用领域。

       MONAI官方例程是基于google colab,不能在kaggle上直接运行。下面介绍配置及运行的详细步骤,把MONAI的第一个例程:“Medical Image Classification Tutorial with the MedNIST Dataset”在Kaggle平台上运行起来。

1.下载MONAI例程:

        通过MONAI官网进入例程的下载界面:https://github.com/Project-MONAI/tutorials/blob/main/2d_classification/mednist_tutorial.ipynb,下图中点击下载按钮,就可以mednist_tutorial.ipynb代码文件下载到电脑上。

2.导入kaggle平台

     Kaggle平台也是基于jupyter notebook进行机器学习算法的开发与验证,可以直接导入.ipynb文件。通过点击File->Import Notebook,把上一步中下载到电脑上的mednist_tutorial.ipynb上传到kaggle平台中。具体步骤如下图所示,按照要求把文件拖拽到红框所示区域就可以了。

       

3. 代码修改

3.1 安装monai软件

        因为kaggle默认环境中是没有MONAI的,需要在代码文件开始位置增加语句:!pip install monai,安装monai软件。如果安装成功,会显示如下图所示的信息。

3.2 更改临时目录

      因为kaggle的工作目录为/kaggle/working/,算法的中间结果和最终输出只允许在该目录进行,所以原代码建立的临时MONAI目录是无效的,必须修改。如下所示的源代码需要注释掉。

directory = os.environ.get("MONAI_DATA_DIRECTORY")
directory = None
root_dir = tempfile.mkdtemp() if directory is None else directory
print(root_dir)

上述代码修改为:root_dir = r'/kaggle/working/'。

4. 运行例程代码

        点击菜单上run -all键,可以运行例程代码,主要结果如下图所示:

图1 数据集随机显示图

图2 训练过程

图3 训练结果

图4 关键指标

5 总结

        只做了一点小改动,就可以在Kaggle平台运行MONAI的例程,后面将会利用Kaggle的GPU资源深入学习、理解MONAI相关例程,为基于MONAI的医学影像应用开发打好基础。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值