principal和prcomp差异

本文详细比较了R语言中principal和prcomp函数在进行PCA分析时的差异,包括旋转方法、输出结果和适用场景。principal函数更全面,而prcomp函数默认不同。同时,解释了如何调整prcomp以匹配principal的输出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在使用R语言计算dataframe的PCA时,principalprcomp是两种不同的函数,它们的差异主要在于以下几个方面:

目录

基本介绍

差异


基本介绍

  1. principal函数是psych包中的函数,而prcomp函数是stats包中的函数。
  2. principal函数可以进行因子分析和PCA分析,而prcomp函数只能进行PCA分析。
  3. principal函数默认使用最大方差法进行旋转,而prcomp函数默认使用标准正交旋转。
  4. principal函数可以输出更多的结果,如因子载荷矩阵、公共因子方差、特殊因子方差等,而prcomp函数只输出主成分得分和主成分载荷矩阵。
# 加载数据
data <- read.csv("data.csv")

# 提取需要进行PCA分析的变量
vars <- c("var1", "var2", "var3")
df <- data[, vars]

# 进行PCA分析
pca <- prcomp(df, scale = TRUE)

# 输出主成分得分和主成分载荷矩阵
print(pca$x) # 主成分得分
print(pca$rotation) # 主成分载荷矩阵

主成分分析 PCA | Principal Components Analysis_pca主成分分析去噪-CSDN博客

差异原因:在使用R语言计算dataframe的PCA时,principalprcomp函数分别计算的PCA得分存在差异,这是因为它们使用了不同的旋转方法。principal函数使用varimax旋转方法,而prcomp函数使用的是默认的variance旋转方法。要解决这个问题,可以在prcomp函数中指定旋转方法为varimax,这样就可以得到与principal函数相同的PCA得分。

#使用prcomp函数计算PCA并指定旋转方法为varimax的代码示例
library(psych)
data <- read.csv("data.csv") # 读取数据
pca <- prcomp(data, center = TRUE, scale. = TRUE) # 计算PCA
pca_rotated <- varimax(pca$rotation) # 使用varimax旋转方法
pca_scores <- as.data.frame(pca$x %*% pca_rotated) # 计算PCA得分

#pca$x表示PCA的主成分得分,pca$rotation表示PCA的旋转矩阵,varimax函数用于进行旋转,as.data.frame函数用于将结果转换为数据框。

主成分分析(PCA)/因子节点旋转选项 - IBM 文档

差异

R语言教程|带你搞清楚主成分分析(PCA)并完成分析 - 知乎 (zhihu.com)

#prcomp()函数
# scale. = TRUE表示分析前对数据进行归一化;
com1 <- prcomp(data[,1:4], center = TRUE,scale. = TRUE)
summary(com1)


#如果使用princomp()函数,需要先做归一化,princomp()函数并无数据标准化相关的参数。且默认使用covariance matrix,得到的结果与使用相关性矩阵有细微差异(如下);原因是根据相关系数公式可知,归一化后的相关性系数近乎等于协方差。
com2 <- princomp(dt,cor = T)
summary(com2)
com3 <- princomp(dt)
summary(com3)

注意,princomp()函数只适用于行数大于列数的矩阵(样本数量大于降维特征数量才能使用),否则会报错:Error in princomp.default(dt) : 'princomp' 只能在单位比变量多的情况下使用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值