Pytorch混合精度(FP16&FP32)(AMP自动混合精度)/半精度 训练(一) —— 原理(torch.half)

我们定义一个tensor默认都是FP32的,即单精度,single

fp16是半精度,half;fp64是双精度, double

AMP自动混合精度

      一般用自动混合精度(AMP, Automatic mixed precision),用半精度可能对acc的影响较大

       混合精度的performance也要看网络,有些网络的提升不大,有些网络会影响acc

      AMP自动混合精度,可以在神经网络推理过程中,针对不同的层,采用不同的数据精度进行计算,从而实现节省显存和加快速度的目的。在Pytorch 1.5版本及以前,通过NVIDIA提供的apex库可以实现amp功能。但是在使用过程中会伴随着一些版本兼容和奇怪的报错问题。从1.6版本开始,Pytorch原生支持自动混合精度训练(torch.cuda.amp),并已进入稳定阶段,AMP 训练能在 Tensor Core GPU 上实现更高的性能并节省多达 50% 的内存。

原理

       当前Pytorch的默认存储数据类型是整数INT64(8字节),浮点数FP32(4字节),PyTorch Tensor的默认类型为单精度浮点数FP32。随着模型越来越大,加速训练模型的需求就产生了。在深度学习模型中使用FP32主要存在几个问题,第一模型尺寸大,训练的时候对显卡的显存要求高;第二模型训练速度慢;第三模型推理速度慢。其解决方案就是使用低精度计算对模型进行优化。

      精度减半(FP32→ FP16) ,训练时间减半。与单精度浮点数float32(32bit,4个字节)相比,半精度浮点数float16仅有16bit,2个字节组成。可以很明显的看到,使用FP16可以解决或者缓解上面FP32的两个问题:显存占用更少:通用的模型FP16占用的内存只需原来的一半,训练的时候可以使用更大的batchsize。计算速度更快:有论文指出半精度的计算吞吐量可以是单精度的 2-8 倍。

      自动混合精度训练的精髓在于“在内存中用FP16进行tensor储存和做乘法从而加速计算,用FP32做累加避免舍入误差”。混合精度训练的策略有效地缓解了舍入误差的问题。从而加快速度,减少内存占用。缺陷是只能在支持FP16操作的一些特定类型的显卡上面使用; 而且依然会存在溢出误差和舍入误差。

        FP16就是torch.half

     NVIDIA GPU 使用 float16 执行运算的速度比使用 float32 快当前很多NVIDIA GPU搭载了专门为快速FP16矩阵运算设计的特殊用途Tensor Core,比如Tesla P100,Tesla V100、Tesla A100、GTX 20XX 和RTX 30XX等。Tensor Core是一种矩阵乘累加的计算单元,每个Tensor Core每个时钟执行64个浮点混合精度操作(FP16矩阵相乘和FP32累加),英伟达宣称使用Tensor Core进行矩阵运算可以轻易的提速,同时降低一半的显存访问和存储。随着Tensor Core的普及FP16计算也一步步走向成熟,低精度计算也是未来深度学习的一个重要趋势。

      动态损失放大,是为了解决使用了混合精度训练,还是会存在无法收敛的情况。因为激活梯度的值太小,造成了下溢出(Underflow)。损失放大的思路是:

具体做法

上面说过,自动混合精度训练的精髓在于“在内存中用FP16进行tensor储存和做乘法从而加速计算,用FP32做累加避免舍入误差”。

那么,从FP32转FP16容易,但是从FP16可就没法转回FP32了,就有精度损失了,所以需要进行FP32的权重备份,即weights, activations, gradients 等数据在训练中都利用FP16来存储,同时拷贝一份FP32的weights,用于更新。

 

因为

这样不会使得显存占用增大,因为大头activations是用FP16存的

用FP32做累加的意思是,2个FP16的值累加,产生的结果用FP32存,然后再转为FP16

并不需要两个FP16先转为FP32

实验 

      硬件使用NVIDIA Geforce RTX 3070作为测试卡,这块卡有184个Tensor Core,能比较好的支持amp模式。模型使用ERFNet分割模型作为基准,cityscapes作为测试数据,10个epoch下的测试效果如下所示:

      在模型的训练性能方面,amp模式下的平均训练时间并没有明显节省,甚至还略低于正常模式。显存的占用大约节省了25%,对于需要大量显存的模型来说这个提升还是相当可观的。理论上训练速度应该也是有提升的,到Pytorch的GitHub issue里翻了一下,好像30系显卡会存在速度提不上来的问题,不太清楚是驱动支持不到位还是软件适配不到位。

 在模型的精度方面,在不进行数据shuffle的情况下统计了10个epoch下两种模式的train_lossval_acc,可以看出不管是训练还是推理,amp模式并没有带来明显的精度损失。


 

### 混合精度训练 (Half Precision Training) #### 实现方法 混合精度训练利用了单精度浮点数(FP32)和半精度浮点数(FP16),旨在加速计算并减少内存占用。具体实现方式如下: - **PyTorch 中的 AMP 工具**:`torch.cuda.amp.autocast()` 和 `torch.cuda.amp.GradScaler()` 是 PyTorch 提供的关键组件,用于自动处理前向传播中的数据类型转换以及梯度缩放问题[^4]。 ```python from torch.cuda import amp model, optimizer = model.to(device), optimizer.to(device) scaler = amp.GradScaler() for input, target in data_loader: optimizer.zero_grad() with amp.autocast(): output = model(input) loss = loss_fn(output, target) scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() ``` - **JAX 的 JMP 库**:对于 JAX 用户来说,可以通过导入 jmp 并调用相应函数来设置参数的数据类型为 float16 或 bfloat16,从而启用混合精度模式。此外,jmp 还提供了个简洁 API 来配置静态或动态损失放大策略[^3]。 ```python import jax.experimental.jmp as jmp policy = jmp.Policy(compute_dtype=jnp.float16, param_dtype=jnp.float32, compute_params_in_fp16=True) @partial(jit, static_argnums=(0,)) def train_step(model_apply_fun, opt_state, batch): ... ``` #### 应用场景 混合精度训练广泛应用于多种深度学习任务中,特别是在资源受限环境下或者追求更高效率的情况下尤为有用: - **图像分类与目标检测**:如 ImageNet 数据集上的卷积神经网络(CNN),采用混合精度可有效缩短收敛所需的时间而不影响最终准确性。 - **自然语言处理(NLP)**:例如 LSTM 构建的语言模型,在保证质量的前提下能够更快完成大规模语料库的学习过程[^2]。 - **语音识别**:端到端声学模型同样可以从这种技术获益匪浅,尤其是在实时性和功耗敏感的应用场合下表现突出。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值