Retinaface 是一个人脸检测器,人脸检测天生存在强先验知识,比如近场人脸识别,人脸较大,监控视角下人脸识别通常人脸较小,两者天生对输入的分辨率有个假设,如果人脸很大,不需要大的分辨率,提升速度。人脸小,希望提高 Recall 那么需要大的分辨率。Retinaface 在不同分辨率下怎么做这件事情。怎么通过 这个仓库的方案解决该问题。
https://github.com/biubug6/Pytorch_Retinaface
直接执行 convert_to_onnx.py
......
具体请参考我写的文章:
本文介绍了Retinaface在不同分辨率下处理人脸检测的方法,并详细阐述了如何通过GitHub上的Pytorch_Retinaface仓库实现ONNX模型的导出。文章探讨了在近场和监控视角下人脸识别的分辨率需求,并提出解决方案,以平衡检测速度和召回率。读者可以参考提供的convert_to_onnx.py脚本进行实践。

被折叠的 条评论
为什么被折叠?



