苹果大模型系列之 使用 MLX 在 macOS 上通过 LLM 微调构建自己的 LLM,在 Mac M2 上,训练过程大约需要 36 分钟(教程含详细步骤与代码)

简介

在我之前的系列文章LlamaIndex中,我讨论了使用、LangChain等工具构建 RAG 应用程序,GPT4All, Ollama以利用 LLM 满足特定用例。在这篇文章中,我将探讨另一种称为 LLM 微调的方法。我使用名为的工具在 macOS 上对 Meta 的 LLaMA-3 和 Mistral LLM 进行了微调MLX,该工具是专为 Apple 芯片上的机器学习研究量身定制的数组框架。这种微调是使用一种名为的技术完成的Low Rank Adapters(LoRA)。随后,这些经过微调的 LLM 使用运行Ollama。与本文相关的所有源代码都已在GitLab上发布。请克隆 repo 以继续阅读本文。

推荐文章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知识大胖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值