为了满足人工智能工作负载日益增长的需求,内存解决方案必须在带宽、容量和效率方面满足要求。从大模型(LLM)的训练到边缘设备的高效推理,选择正确的内存技术对芯片设计师至关重要。本博客探讨了三种内存解决方案——HBM、LPDDR和GDDR——以及它们对人工智能加速器的适用性。
高带宽内存(HBM):人工智能训练的终极选择
生成式人工智能和LLM重新定义了计算要求,模型超过一万亿个参数,并且需要巨大的内存带宽进行训练。得益于其革命性的2.5D/3D封装的带宽,高带宽内存(HBM)已成为人工智能训练的首选解决方案。
HBM4是JEDEC标准的最新迭代,建立在HBM3和HBM3E的成功之上。通过将数据线增加一倍到2,048,并支持高达6.4 Gb/s(每秒千兆)的数据速率,HBM4可以实现每个设备1.6 TB/s的带宽。配备八个HBM4设备的加速器可以提供13 TB/s的总内存带宽,没有其他内存解决方案能媲美。
trade off是HBM的2.5D/3D封装架构带来了更大的复杂性和成本。2.5D是说使用硅中介TSV作为互连平台,远远超过HBM设备和加速器之间所需的PCB上可以实现的连接数量。HBM设备是3D DRAM芯片堆栈,提供极其紧凑和节能的解决方案。
LPDDR:边缘设备上人工智能的节能内存
随着Gen AI功能从数据中心扩展到边缘,并最终扩展到智能手机和笔记本电脑等终端设备,低功耗双数据速率(LP