TensotFlow 应用实例:11-使用CNN预测手写数字MNIST

TensotFlow 应用实例:11-使用CNN预测手写数字MNIST

本文是我在学习TensotFlow 的时候所记录的笔记,共享出来希望能够帮助一些需要的人。

什么是卷积神经网络 CNN (深度学习)?
What is Convolutional Neural Networks (deep learning)?

卷积神经网络 最常应用于 图片识别
卷积是说神经网络不在对每一个点的数据进行处理,而是对一个区域进行处理

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data


# 什么是卷积神经网络 CNN (深度学习)?
# What is Convolutional Neural Networks (deep learning)?

# 卷积神经网络 最常应用于 图片识别
# 卷积 神经网络
# 卷积是说神经网络不在对每一个点的数据进行处理,
# 而是对一个区域进行处理
# Google 自己的 CNN 教程
# https://classroom.udacity.com/courses/ud730/lessons/6377263405/concepts/63796332430923


# number 1 to 10 image data
# 如果本地没有相应的数据包,会先下载,然后解压数据包
# MNIST_data 是下载数据要保存的位置
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

# 添加神经层
def add_layer(inputs, in_size, out_size, activation_function=None):
    # Weights define
    # 权重,尽量要是一个随机变量
    # 随机变量在生成初始变量的时候比全部为零效果要好的很多
    Weights = tf.Variable(tf.random_normal([in_size, out_size]))
    # biases define
    # 偏值项,是一个列表,不是矩阵,默认设置为0 + 0.1
    biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
    # W * x + b
    Wx_plus_b = tf.matmul(inputs, Weights) + biases
    # 如果activation_function是空的时候就表示是一个线性关系直接放回即可
    if activation_function is None:
        outputs = Wx_plus_b
    else:
        outputs = activation_function(Wx_plus_b)
    return outputs


# 计算精确度
# compute_accuracy 要使用
def compute_accuracy(v_xs, v_ys):
    global prediction
    y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1})
    correct_prediction = tf.equal(tf.argmax(y_pre, 1), tf.argmax(v_ys, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    # result 是一个百分比,百分比越高证明越准确
    result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1})
    return result


def weight_variable(shape):
    # normal 产生随机变量
    # stddev: A 0-D Tensor or Python value of type `dtype`. The standard deviation
    # of the truncated normal distribution.
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)


def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)


# x input W is weight
def conv2d(x, W):
    # strides [1, x_movement, y_movement, 1]
    # 前后都要为1
    # VALID SAME padding方式
    # VALID 较小, SAME 和原图一样
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')


def max_pool_2x2(x):
    result = tf.nn.max_pool(x,
                            ksize=[1, 2, 2, 1],
                            strides=[1, 2, 2, 1],
                            padding='SAME')
    return result


# 定义 placeholder
xs = tf.placeholder(tf.float32, [None, 784])/255.
ys = tf.placeholder(tf.float32, [None, 10])
keep_prob = tf.placeholder(tf.float32)
# 将输入的xs转换为图片的形式
# -1 不管维度
# 28*28 像素点
# 1 channel 是黑白
x_image = tf.reshape(xs, [-1, 28, 28, 1])
# print(x_image.shape) # [n_samples, 28, 28, 1]


# conv1 layer
# 5 * 5 patch ,长*宽
# in size is 1, image的厚度,输入的厚度
# out is 32, 输出的深度,厚度
W_conv1 = weight_variable([5, 5, 1, 32])
# 32个输出,所有b为32
b_conv1 = bias_variable([32])
# conv2d output size 28x28X32
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
# max_pool_2x2 output 14x14x32
h_pool1 = max_pool_2x2(h_conv1)

# conv2 layer
# out is 64, 输出的深度,厚度
W_conv2 = weight_variable([5, 5, 32, 64])
# 32个输出,所有b为64
b_conv2 = bias_variable([64])
# conv2d output size 14x14x64
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
# max_pool_2x2 output 7x7x64
h_pool2 = max_pool_2x2(h_conv2)

# func1 layer
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
# [n_samples, 7, 7, 64] >> [n_samples, 7*7*64]
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
# drop out
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)


# func2 layer
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

# prediction = add_layer(xs, 784, 10,  activation_function=tf.nn.softmax)

# cross_entropy 分类的时候经常使用softmax + cross_entropy来计算的
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),
                                              reduction_indices=[1]))
# train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
# AdamOptimizer 需要的学习速率应该更小
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)


sess = tf.Session()

# important step
# tf.initialize_all_variables() no long valid from
# "2017-03-02", "Use `tf.global_variables_initializer` instead."
init = tf.global_variables_initializer()
sess.run(init)


for i in range(1000):
    batch_xs, batch_ys = mnist.train.next_batch(100)
    sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 0.5})
    if i % 50 == 0:
        print(compute_accuracy(mnist.test.images, mnist.test.labels))


本文代码GitHub地址 tensorflow_learning_notes

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
本课程适合具有一定深度学习基础,希望发展为深度学习之计算机视觉方向的算法工程师和研发人员的同学们。基于深度学习的计算机视觉是目前人工智能最活跃的领域,应用非常广泛,如人脸识别和无人驾驶中的机器视觉等。该领域的发展日新月异,网络模型和算法层出不穷。如何快速入门并达到可以从事研发的高度对新手和中级水平的学生而言面临不少的挑战。精心准备的本课程希望帮助大家尽快掌握基于深度学习的计算机视觉的基本原理、核心算法和当前的领先技术,从而有望成为深度学习之计算机视觉方向的算法工程师和研发人员。本课程系统全面地讲述基于深度学习的计算机视觉技术的原理并进行项目实践。课程涵盖计算机视觉的七大任务,包括图像分类、目标检测、图像分割(语义分割、实例分割、全景分割)、人脸识别、图像描述、图像检索、图像生成(利用生成对抗网络)。本课程注重原理和实践相结合,逐篇深入解读经典和前沿论文70余篇,图文并茂破译算法难点, 使用思维导图梳理技术要点。项目实践使用Keras框架(后端为Tensorflow),学员可快速上手。通过本课程的学习,学员可把握基于深度学习的计算机视觉的技术发展脉络,掌握相关技术原理和算法,有助于开展该领域的研究与开发实战工作。另外,深度学习之计算机视觉方向的知识结构及学习建议请参见本人CSDN博客。本课程提供课程资料的课件PPT(pdf格式)和项目实践代码,方便学员学习和复习。本课程分为上下两部分,其中上部包含课程的前五章(课程介绍、深度学习基础、图像分类、目标检测、图像分割),下部包含课程的后四章(人脸识别、图像描述、图像检索、图像生成)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值