关于需求洞察:高语境,更合适直接做Demo,而不是和用户尬聊

你觉得这个功能怎么样?

挺好的。

那您会经常使用吗?

应该会吧。

……

这样的对话,是不是很熟悉?

用户研究的各种方法论,多是外来引进的,不知道大家在日常使用的时候,特别是和用户互动的那类,有没有总觉得不够给劲?似乎挖不出真正的需求?

当我知道了“高语境”的概念之后,想到了一个解释。

d864ca54e92c57db1c1077937dce9469.jpeg

先说说高低语境是什么意思——“高语境”(High Context)和“低语境”(Low Context)是由文化研究者 爱德华·霍尔(Edward T. Hall) 提出的跨文化沟通概念,主要用来描述不同文化背景下人们在沟通中对语言和非语言因素的依赖程度。

引用一段(嫌长可以跳过灰色字,直接看结论):



1. 高语境文化(High Context Culture)

定义:在高语境文化中,沟通依赖非语言线索(如语调、手势、面部表情、上下文和关系)来传递信息,语言本身所表达的信息量较少。

  • 特点

    • 关系导向,强调人际关系的重要性。

    • 沟通含蓄、间接,留有很大的“言外之意”。

    • 信息传递高度依赖于上下文、共同的背景和文化默契。

    • 强调长期关系,通常需要“读懂空气”或察觉潜在信息。

  • 典型代表
    日本、中国、韩国、印度、阿拉伯国家等亚洲和中东文化。

    • 例如,中国文化中常说的“言外之意”“察言观色”,强调心照不宣。

  • 举例
    在中国的商务谈判中,很多事情可能不会直截了当地表达,而是通过暗示、语境或关系间接传递。比如,“考虑一下吧”可能暗示对方拒绝了,而不是字面上的“我会考虑”。

2. 低语境文化(Low Context Culture)

定义:在低语境文化中,沟通依赖明确的语言表达,信息主要通过语言本身传递,语境因素和非语言线索的作用较小。

  • 特点

    • 任务导向,重视信息的准确性和清晰度。

    • 沟通直接、清晰,避免模棱两可。

    • 更注重通过语言本身传达明确的意思,减少对背景或隐喻的依赖。

    • 重视短期关系,沟通更具结果导向性。

  • 典型代表
    美国、德国、瑞士、北欧等西方国家文化。

    • 例如,美国人倾向于直截了当地说出自己的想法,如“不行”就是“不行”,不会含蓄表达。

  • 举例
    在美国的职场中,如果你不同意一份提案,你会清楚地表达“我不赞成,因为……”,而不是通过迂回的话语来暗示拒绝。

3. 高语境与低语境的对比总结

维度高语境文化低语境文化
沟通风格含蓄、间接、依赖语境直接、清晰、依赖语言
信息传递依赖非语言线索,言外之意重要语言表达明确,信息依赖字面意思
关系重视程度长期关系导向,重视人际关系任务导向,重视效率与目标
文化代表亚洲、中东、拉丁美洲美国、德国、北欧等西方国家


4. 实际应用与理解

在跨文化沟通中,理解“高语境”和“低语境”文化的差异,可以帮助我们更好地处理不同文化背景下的沟通挑战:

  • 高语境文化中,要学会察言观色、关注潜台词和上下文;

  • 低语境文化中,要重视语言的清晰度,直截了当表达自己的意思。

例如,跨国合作时,来自低语境文化的美国人可能会误解高语境文化中的日本人表达的“模糊言辞”,认为他们态度不明确;而日本人则可能认为美国人过于直接、不够礼貌。

总结

  • 高语境:言在此而意在彼,注重隐含信息。

  • 低语境:有话直说,注重明确传达。


76bdeb7e45d59d114d0366b34bfa31fa.jpeg

回到我们讨论的话题,当你在和用户——特别是不太熟的对方——沟通的时候,会更难通过察言观色、识别潜台词、“读空气”而洞察出用户真正的观点,而且,因为环境的影响,用户的观点也会更具“适应性/随机性”,而不是一个有内而发的、相对稳定的存在

然后,你就会拿回来一堆漏洞百出的调研资料。

你脑中的例子一定很多,这里略过。

那怎么办呢?

多问几个“为什么”:碰到“观点”,通过追问用户“为什么这么觉得?”“具体有什么不满意的地方?”来引导用户说出真实想法。

使用具体选项:给用户提供具体选项或示例,帮助他们明确表达需求。例如:“你希望我们简化操作步骤还是减少页面内容?”

关注非语言线索:注意用户的面部表情、语调、迟疑等非语言信号,判断他们的真实态度。

间接反馈法:把你的理解总结给用户,让他们确认或补充,比如“我理解您可能希望界面更简洁,是不是因为现在信息量太大?”

建立信任关系:通过长期互动建立熟悉感,用户才更愿意直接表达想法。

……

更好的办法,则是借力近期AI的发展,在越来越多的场景里,利用高低语境对“行为”的影响弱于“观点”的特性,“弱化洞察,强化验证,用假产品探寻真需求”。

拿着越来越接近“实时生成式”的产品,或者Demo,让更多的“尬聊”过程有“解决方案”的参与,让用户更多地用行为(而不是观点)告诉我们他不喜欢什么,然后我们来改。

扩展阅读:当“实时生成式的产品”成为可能,会发生什么

_________

苏杰(iamsujie),产品创新顾问,《人人都是产品经理》丛书作者,良仓孵化器创始合伙人,阿里8年产品经理,集团产品大学负责人。如需产品经理/产品思维/产品创新相关领域的培训咨询服务,欢迎联系这个微信(13758212411)。

内容概要:这份PDF资料详细提供了关于如何撰写带有“渐渐感动”的内容以及不同类型的信件写作技巧。其中包括宏观层面的社会公德教育和社会风气改善措施,对学校及政府的期望值提等建设性意见。对于个人提升方面,则着重强调了良好的学习成绩对学术发展的贡献,以及具备优秀的英语水平和计算机技能的重要性,同时倡导养成良好性格和个人发展目标规划的良好品质。此外还列出了多套推荐模板涵盖人际交往中常见的表扬、介绍信件的首尾句,推荐他人时的评语模式等;同时涵盖了针对不同对象进行的投诉、道歉、感谢和祝贺等情境下书信格式和行文思路。 适合人群:正在准备考试的学生们,或者是想要规范自身书写习惯的人群都可以从中获取有益的参考资料。 使用场景及目标:适用于需要按照衡水体书写标准完成相关文字工作的场合;目标是为了帮助使用者掌握正确的笔法结构及表达范例,使书写的作品为美观流畅,从而好地达到传递情感的目的,并在正式场合如信函撰写中表现出专业性和规范性。 其他说明:该文档特别提供了一些常见社交沟通场合下的文本框架,如投诉、道歉、感谢与祝贺信的形式和内容指导;同时也涉及了对于公共环境优化和个人品德培养等方面的提议,为读者提供了多元化的学习素材和发展方向指导。
内容概要:本文介绍了一种称为注意引导金字塔上下文网络(AGPCNet)的数据驱动方法,旨在解决复杂背景环境下对红外小目标进行精度检测的问题。针对传统方法难以充分利用特征像素之间的关联及其表示能力不足的问题,提出三个创新点:1)注意引导上下文块(AGCB),结合局部语义关联(LSA)和全局上下文注意力(GCA),分别估算补丁内部及不同尺度间的特征关联,凸显小目标并抑制杂乱背景;2)多尺度上下文融合模块(CPM),将AGCB应用于多个尺度上,并整合上下文信息,以改善特征表示;3)非对称融合模块(AFM),用于上采样阶段合并浅层和深层语义,保持多目标细节信息。文中实验结果显示,在三组公开数据集上的测试性能均显著优于现有的最先进模型。 适用地点及目标:AGPCNet主要适用于需要精确探测红外区域小物体的系统如海洋救援、制导导弹等。研究不仅提了检测率同时减少了误报。 其他说明:作者们通过对每个模块进行消融实验证明了各部分的有效性和合理性,并通过对比实验展示了相对于多种经典基准模型的巨大优势。此外,该论文提供了开源代码。 适合人群:对深度学习尤其是计算机视觉领域有一定理解的研究人员和技术人员,希望从事复杂背景下小目标检测工作的工程师。 使用场景及目标:①适用于需要在各种干扰条件下(如云层、空气湍流等)准确定位并提取弱小红外信号的任务;②有助于减少虚假警报率,提升真实探测质量。 阅读建议:文章深入探讨了模型设计思路以及各个组件的功能细节。为了好地理解这些内容,建议读者首先掌握基本的神经网络概念和技术,比如卷积神经网络的工作原理以及常见的激活函数特性等基础知识,以便能够跟上讨论并深入了解本课题的具体实施情况。此外,建议尝试复现一些提供的实验设置来加深理解和实践操作经验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值