量子统计:玻尔兹曼分布、玻色分布、费米分布

文章详细介绍了量子统计中的三个重要分布——玻尔兹曼分布、玻色-爱因斯坦分布和费米-狄拉克分布。玻尔兹曼分布是基于经典统计物理的描述,而在量子层面上,由于全同粒子和Pauli不相容原理的存在,导致了玻色分布(全同且不满足Pauli不相容)和费米分布(全同且满足Pauli不相容)的出现。文章通过数学公式阐述了三种分布的微观态计算方法,并在经典极限条件下讨论了它们与玻尔兹曼分布的关系。
摘要由CSDN通过智能技术生成

从量子统计角度出发理解三个分布的由来

0.前言

  • μ \mu μ空间,是一个粒子的广义坐标空间,对r个维度(坐标上r个维度,动量上r各维度,一一对应)的粒子,它就处于2r维的 μ \mu μ空间下。说它是粒子的运动空间,完全反映粒子的运动状态毫不过分。
  • 麦克斯韦-玻尔兹曼分布是玻尔兹曼于19世纪70年代就推导出来了的分布,这时还处于统计物理学的早期,量子物理还不见踪影。我打算用一种尽可能通俗的语言对玻老爷子的推导来一番解释:
    ① 一个全是粒子的系统,这里面的每个粒子我应该都能够对它标号,并且能够监控每一个粒子在 μ \mu μ空间里的变化轨迹,
    ②然后我再把 μ \mu μ空间变成许多个小的体积元,每个体积元里粒子具有相同能量,
    ③ 我再再通过假设“每个粒子在这些小元里的出现概率是一样的”,不难得出每个小元中有多少个粒子,行了!我知道总粒子数N,知道划出了J个小体元,我就可以知道“第j个体元中有 a j a_j aj个粒子”这个事情,到底对应了多少个不同的粒子组合。但仔细想想,{ a j a_j aj}这个分布还远远不能算作系统的微观态,因为微观态的(不严格定义是 “系统中每个粒子的微观运动状态的集合”,而一个能量完全可能对应很多个运动状态嘛,只知道一个能量对应的粒子个数还不够,还要能确定这些粒子的运动状态才行,
    ④于是我们再再再再回到小体元这个概念,首先我们取了小体原,它一定有个体积 δ V \delta V δV,如果是经典粒子它的运动状态变化是连续的,那这个 δ V \delta V δV大小的体积元中围住了多少个运动状态?我们定义 Δ \Delta Δ是一个相格,这个相格中只允许一种运动状态存在,所以说是 δ V Δ \frac{\delta V}{\Delta} ΔδV个好像也不算太过分. δ V \delta V δV是一个相格,这个相格中只允许一种运动状态存在。
    这样就把问题彻底描述清楚了!一个由J个“第j个体元中有 a j a_j aj个粒子”事件构成的系统对应的微观态数={ a j a_j aj}这个分布对应的粒子标号数 × \times ×每一个粒子的运动状态可能的取法。计这个微观态数为 Ω \Omega Ω,就有了这个经典的公式:
    Ω c l = N ! ∏ j a j ! ∏ j ( Δ μ j Δ ) a j (0.1) \Omega_{cl} = \frac{N!}{\prod_j a_j!}\prod_{j}{(\frac{\Delta\mu_j}{\Delta})}^{a_j} \tag{0.1} Ωcl=jaj!N!j(ΔΔμj)aj(0.1)
  • Δ \Delta Δ作为相格,体积是非常小的。经典描述中,不对 Δ \Delta Δ的大小加以限制;而量子描述中, Δ \Delta Δ不能小过 h r h^r hr的量级.

1.量子状态下对MB分布的重新描述

1.1 能级简并度、全同近独立、Pauli不相容

  • 能级简并,简单的说,就是同一个能量可以对应不同多个量子态。类比经典描述中同一能量的粒子有无数多个运动状态,就可以说“经典粒子在任意能量下,它的简并度都是无穷大"。量子粒子在同一个能级中的量子态数是有限个。如果用 ω l \omega_l ωl表示 ε = ε l \varepsilon = \varepsilon_l ε=εl对应的量子态数,可以列一张表:
1234
ε 1 \varepsilon_1 ε1 ε 2 \varepsilon_2 ε2 ε 3 \varepsilon_3 ε3 ε 4 \varepsilon_4 ε4
ω 1 \omega_1 ω1 ω 2 \omega_2 ω2 ω 3 \omega_3 ω3 ω 4 \omega_4 ω4
a 1 a_1 a1 a 2 a_2 a2 a 3 a_3 a3 a 4 a_4 a4

{ a l a_l al}( l l l=0,1,2…)是宏观态的分布,满足这样一组分布的有很多个微观态。

  • 全同近独立:MB分布、BE(玻色-爱因斯坦)分布、FD(费米-狄拉克)分布,在量子描述中,他们的区别如下:
    • 根据粒子是否全同,可以分成MB分布/BE和FD分布。MB中粒子是不全同的,BE和FD中粒子全同。
    • 全同,简单说,如果可以对粒子标号将它们区分开,就不认为它们全同,反之认为他们全同。
  • Pauli不相容原理:上面三个分布,根据Pauli不相容原理,可以分成FD分布/MB分布和BE分布。
    • Pauli不相容原理对同一能级中,粒子占据量子态的个数给出限制,简单来说,一个量子态最多只能有1个粒子占据。

1.2 量子描述中MB分布是非全同且不满足Pauli不相容的粒子的情况

  • N ! ∏ j a j ! \frac{N!}{\prod_j a_j!} jaj!N!表示宏观分布的分配数,$\prod_{j}{\omega_j}^{a_j} $表示能级中量子态的分配数,于是

Ω M . B . = N ! ∏ j a j ! ∏ j ω j a j (1.1) \Omega_{M.B.}=\frac{N!}{\prod_j a_j!}\prod_{j}{\omega_j}^{a_j} \tag{1.1} ΩM.B.=jaj!N!jωjaj(1.1)

2.玻色分布

  • BE分布是全同且不满足Pauli不相容的粒子的情况.
  • 因为全同,所以不需要进行宏观分布的分配, N ! ∏ j a j ! → 1 \frac{N!}{\prod_j a_j!}\rightarrow1 jaj!N!1
  • 因为不满足Pauli,每个量子态上粒子个数不限,对于 ε l \varepsilon_l εl,问题变成:"将 a l a_l al个相同小球放进 ω l \omega_l ωl个不同箱子,每个箱子中球数不限。有几种方法?"这个数利用组合数表示就是 $ a_l+\omega_l-1\choose \omega_l-1$.于是BE分布的微观态描述:

Ω B . E . = ∏ j ( ω j + a j − 1 ) ! a j ! ( ω j − 1 ) ! (2.1) \Omega_{B.E.}=\prod_{j}\frac{{(\omega_j+a_j-1)!}}{a_j!(\omega_j-1)!} \tag{2.1} ΩB.E.=jaj!(ωj1)!(ωj+aj1)!(2.1)

  • 在经典极限条件下,BE分布退化成MB分布:
    Ω B . E . ≈ Ω M . B . N ! (2.2) \Omega_{B.E.}\approx \frac {\Omega_{M.B.}}{N!} \tag{2.2} ΩB.E.N!ΩM.B.(2.2)

3.费米分布

  • FD分布是全同且满足Pauli不相容的粒子的情况.

  • 因为全同,所以不需要进行宏观分布的分配, N ! ∏ j a j ! → 1 \frac{N!}{\prod_j a_j!}\rightarrow1 jaj!N!1

  • 因为满足Pauli,需要有前提$ a_l<=\omega_l , 其 组 合 数 为 ,其组合数为 \omega_l\choose a_l$,于是
    Ω F . D . = ∏ j ω j ! a j ! ( ω j − a j ) ! (3.1) \Omega_{F.D.}=\prod_{j}\frac{{\omega_j!}}{a_j!(\omega_j-a_j)!} \tag{3.1} ΩF.D.=jaj!(ωjaj)!ωj!(3.1)

  • 在经典极限条件下,BE分布退化成MB分布
    Ω F . D . ≈ Ω M . B . N ! (3.2) \Omega_{F.D.}\approx \frac {\Omega_{M.B.}}{N!} \tag{3.2} ΩF.D.N!ΩM.B.(3.2)

4.附录

  • 由这些微观态描述,可以得到他们对应的宏观态表达:
    MB
    a l ( M . B . ) = ω l e − α − β ε l (4.1) a_{l(M.B.)} =\omega_l e^{-\alpha -\beta \varepsilon_l} \tag{4.1} al(M.B.)=ωleαβεl(4.1)
    BE
    a l ( B . E . ) = ω l e α + β ε l − 1 (4.2) a_{l(B.E.)} =\frac{\omega_l}{e^{\alpha +\beta \varepsilon_l}-1} \tag{4.2} al(B.E.)=eα+βεl1ωl(4.2)
    e α + β ε l − 1 = 0 e^{\alpha +\beta \varepsilon_l}-1=0 eα+βεl1=0,玻色-爱因斯坦凝聚。
    FD
    a l ( F . D . ) = ω l e α + β ε l + 1 (4.3) a_{l(F.D.)} =\frac{\omega_l}{e^{\alpha +\beta \varepsilon_l}+1} \tag{4.3} al(F.D.)=eα+βεl+1ωl(4.3)

  • 经典极限条件: a l ≪ ω l a_l\ll\omega_l alωl

参考

《热力学.统计物理》汪志诚

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
玻尔兹曼统计费米统计和波色统计统计物理学中常用的三种统计方法。它们之间的区别在于它们对粒子的统计方式不同。 玻尔兹曼统计是基于经典物理学的方法,它假设粒子之间没有相互作用,且每个粒子的状态是互相独立的。根据这个假设,玻尔兹曼统计计算粒子在各个能级上的分布概率,从而得到粒子的物理性质。玻尔兹曼统计适用于粒子之间没有明显相互作用的系统。 费米统计是基于量子力学的方法,它假设粒子遵循泡利不相容原理,即同一时刻不能有两个或多个粒子处于同一量子态。根据这个假设,费米统计计算粒子在各个能级上的分布概率,从而得到粒子的物理性质。费米统计适用于费米子(如电子、质子等)组成的系统。 波色统计也是基于量子力学的方法,它假设粒子可以处于同一量子态,即波色-爱因斯坦统计。根据这个假设,波色统计计算粒子在各个能级上的分布概率,从而得到粒子的物理性质。波色统计适用于波色子(如光子、声子等)组成的系统。 总的来说,玻尔兹曼统计适用于粒子之间没有相互作用的系统,费米统计适用于费米子组成的系统,波色统计适用于波色子组成的系统。而这三种统计方法之间的联系在于它们都是统计物理学中的基本方法,它们都可以用来计算粒子的分布概率和物理性质。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值