矩阵求逆引理(Matrix Inversion Lemma)的意义

在这里插入图片描述

矩阵求逆引理:
( Z + U W V ) − 1 = Z − 1 − Z − 1 U ( W − 1 + V Z − 1 U ) − 1 V Z − 1 (Z+UWV)^{-1} = Z^{-1} - Z^{-1}U(W^{-1}+V Z^{-1}U)^{-1}V Z^{-1} (Z+UWV)1=Z1Z1U(W1+VZ1U)1VZ1


你可能知道这个定理是用来加速计算的,但你知道怎么用这个定理吗?什么时候可以用?

下面来解释一下这个定理的应用场景:

Z ∈ R n × n Z\in R^{n\times n} ZRn×n, 我们需要对 Z Z Z求逆,计算 Z − 1 Z^{-1} Z1. 计算复杂度为 O ( n 3 ) O(n^3) O(n3).

假设我们计算好了 Z − 1 Z^{-1} Z1,然后发现 Z Z Z 受到了扰动变成了 Z ^ = Z + E \hat{Z}= Z+E Z^=Z+E,需要做什么修正呢?

如果直接计算 Z ^ − 1 \hat{Z}^{-1} Z^1,再花费 O ( n 3 ) O(n^3) O(n3)的计算量,未免有点浪费,因为之前的计算结果 Z − 1 Z^{-1} Z1完全没有用到,有什么办法用到已有的计算结果 Z − 1 Z^{-1} Z1来加速求解 Z ^ − 1 \hat{Z}^{-1} Z^1呢?

这就用到了逆矩阵引理!

假设扰动是低秩矩阵,即可分解成
E = U W V E=UWV E=UWV其中 U ∈ R n × m , W ∈ R m × m , V ∈ R m × n , m < < n U\in R^{n\times m}, W \in R^{m \times m}, V\in R^{m \times n}, m<< n URn×m,WRm×m,VRm×n,m<<n,且 W W W 可逆。例如奇异值分解。

接下来利用矩阵求逆引理,就可快速求解 Z ^ − 1 \hat{Z}^{-1} Z^1 了,看看等式右端的计算复杂度,只需要计算 m m m 阶矩阵的逆和几个矩阵乘法即可,矩阵乘法是可以并行加速的,因此计算时间大大减少!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

颹蕭蕭

白嫖?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值