Nonlinear Backstepping Controller and Adaptive Controller

1 非线性反推控制器

对于一个Chain of Integrator,即对于一个链式系统,例如非线性弹簧系统:
{ x 1 ˙ = x 2 x 2 ˙ = − α m x 1 3 + 1 m u \begin{cases} \dot{x_1}=x_2 \\ \dot{x_2}=-\frac{\alpha}{m}x_1^{3}+\frac{1}{m}u \end{cases} {x1˙=x2x2˙=mαx13+m1u 该系统中,通过控制输入u,进而控制 x 2 ˙ \dot{x_2} x2˙;通过控制 x 2 ˙ \dot{x_2} x2˙ x 2 x_2 x2,控制 x 1 ˙ \dot{x_1} x1˙ x 1 x_1 x1 u → x 2 → x 1 u\rightarrow x_2\rightarrow x_1 ux2x1。从物理的角度分析就是通过控制外力F来控制滑块的速度 x 2 x_2 x2 x ˙ \dot{x} x˙),进而控制滑块的位置 x 1 x_1 x1 x x x)。
通过两步实现设计链式系统的输入u,进而控制 x 1 x_1 x1
(1)设计中间输入 x 2 d x_{2d} x2d,使 x 1 → x 1 d x_1\rightarrow x_{1d} x1x1d
(2)设计系统输入u,使 x 2 → x 2 d x_2\rightarrow x_{2d} x2x2d

2 非线性反推控制器——以非线性弹簧系统为例

非线性弹簧系统如下:
在这里插入图片描述
横向受力分析,根据牛顿第二定律:
F − α x 3 = m a = m x ¨ F-\alpha x^{3}=ma=m\ddot{x} Fαx3=ma=mx¨故系统状态方程为: m x ¨ + α x 3 = F m\ddot{x}+\alpha x^{3}=F mx¨+αx3=F分析一个Tracking Problem,系统目标为改变F使滑块按指定轨迹移动。
令输入Input: F = u F=u F=u,位移Displacement: x 1 = x x_1=x x1=x,速度Velocity: x 2 = x ˙ x_2=\dot{x} x2=x˙
系统目标: x 1 → x 1 d x_1\rightarrow x_{1d} x1x1d
(1)System State-Space Function
{ x 1 ˙ = x 2 x 2 ˙ = x ¨ = − α m x 1 3 + 1 m u \begin{cases} \dot{x_1}=x_2 \\ \dot{x_2}=\ddot{x}=-\frac{\alpha}{m}x_1^{3}+\frac{1}{m}u \end{cases} {x1˙=x2x2˙=x¨=mαx13+m1u
(2)Find x 2 d x_{2d} x2d,使 x 1 → x 1 d x_1\rightarrow x_{1d} x1x1d
引入error:
e = x 1 d − x 1 e=x_{1d}-x_1 e=x1dx1系统目标变为: e → 0 e\rightarrow 0 e0,误差随时间变化:
e ˙ = x ˙ 1 d − x 1 ˙ = x ˙ 1 d − x 2 \dot{e}=\dot{x}_{1d}-\dot{x_1}=\dot{x}_{1d}-x_2 e˙=x˙1dx1˙=x˙1dx2希望 t → ∞ t\rightarrow\infty t e → 0 e\rightarrow0 e0,即系统渐近稳定。
假设Lyapunov Function: V ( e ) = 1 2 e 2 V(e)=\frac{1}{2}e^{2} V(e)=21e2 V ( e ) V(e) V(e)是正定的(Positive Definite, PD), V ( e ) V(e) V(e)随时间变化: V ˙ ( e ) = e e ˙ = e ( x ˙ 1 d − x 2 ) \dot{V}(e)=e\dot{e}=e(\dot{x}_{1d}-x_2) V˙(e)=ee˙=e(x˙1dx2)根据李雅普诺夫直接方法(Lyapunov Direct Method),希望系统渐近稳定 → \rightarrow V ˙ ( e ) \dot{V}(e) V˙(e)是负定的(Negative Definite, ND)。
因此,令 x ˙ 1 d − x 2 d = − k 1 e \dot{x}_{1d}-x_{2d}=-k_1e x˙1dx2d=k1e,其中 k 1 > 0 k_1>0 k1>0,称为Controller Gain,即保证了 V ˙ ( e ) \dot{V}(e) V˙(e)是ND,即得到: x 2 d = x ˙ 1 d + k 1 e x_{2d}=\dot{x}_{1d}+k_1e x2d=x˙1d+k1e(3)Design u,使 x 2 → x 2 d x_2\rightarrow x_{2d} x2x2d
引入error Delta:
δ = x 2 d − x 2 \delta=x_{2d}-x_2 δ=x2dx2系统目标变为: e → 0 , δ → 0 e\rightarrow0,\delta\rightarrow0 e0δ0,误差随时间变化: δ ˙ = x ˙ 2 d − x ˙ 2 = x ˙ 2 d + α m x 1 3 − 1 m u \dot{\delta}=\dot{x}_{2d}-\dot{x}_2=\dot{x}_{2d}+\frac{\alpha}{m}x_1^{3}-\frac{1}{m}u δ˙=x˙2dx˙2=x˙2d+mαx13m1u假设Lyapunov Function: V ( e , δ ) = 1 2 e 2 + 1 2 δ 2 V(e,\delta)=\frac{1}{2}e^{2}+\frac{1}{2}\delta^{2} V(e,δ)=21e2+21δ2李雅普诺夫函数 V ( e , δ ) V(e,\delta) V(e,δ)随时间变化: V ˙ ( e , δ ) = e e ˙ + δ δ ˙ = e ( x ˙ 1 d − x 2 ) + δ δ ˙ \dot{V}(e,\delta)=e\dot{e}+\delta\dot{\delta}=e(\dot{x}_{1d}-x_2)+\delta\dot{\delta} V˙(e,δ)=ee˙+δδ˙=e(x˙1dx2)+δδ˙因为 δ = x 2 d − x 2 \delta=x_{2d}-x_2 δ=x2dx2,即 x 2 = x 2 d − δ x_2=x_{2d}-\delta x2=x2dδ,代入上式有: V ˙ ( e , δ ) = e ( x ˙ 1 d − x 2 d + δ ) + δ δ ˙ \dot{V}(e,\delta)=e(\dot{x}_{1d}-x_{2d}+\delta)+\delta\dot{\delta} V˙(e,δ)=e(x˙1dx2d+δ)+δδ˙由于在(2)中有 x 2 d = x ˙ 1 d + k 1 e x_{2d}=\dot{x}_{1d}+k_1e x2d=x˙1d+k1e,代入上述有: V ˙ ( e , δ ) = e ( x ˙ 1 d − x ˙ 1 d − k 1 e + δ ) + δ δ ˙ = − k 1 e 2 + δ ( e + δ ˙ ) \dot{V}(e,\delta)=e(\dot{x}_{1d}-\dot{x}_{1d}-k_1e+\delta)+\delta\dot{\delta}=-k_1e^{2}+\delta(e+\dot{\delta}) V˙(e,δ)=e(x˙1dx˙1dk1e+δ)+δδ˙=k1e2+δ(e+δ˙)很明显, − k 1 e 2 -k_1e^{2} k1e2项是ND的,目标是 t → ∞ t\rightarrow \infty t e → 0 e\rightarrow0 e0 δ → 0 \delta\rightarrow0 δ0,故希望 δ ( e + δ ˙ ) \delta(e+\dot{\delta}) δ(e+δ˙)项也是ND的。
e + δ ˙ = − k 2 δ e+\dot{\delta}=-k_2\delta e+δ˙=k2δ,其中, k 2 > 0 k_2>0 k2>0,称为Controller Gain,即保证了 V ˙ ( e , δ ) \dot{V}(e,\delta) V˙(e,δ)是ND的。代入 e e e δ ˙ \dot{\delta} δ˙ δ \delta δ,有: x 1 d − x 1 + x ˙ 2 d + α m x 1 3 − 1 m u = − k 2 ( x 2 d − x 2 ) x_{1d}-x_1+\dot{x}_{2d}+\frac{\alpha}{m}x_1^{3}-\frac{1}{m}u=-k_2(x_{2d}-x_2) x1dx1+x˙2d+mαx13m1u=k2(x2dx2)整理得: u = m ( x 1 d − x 1 + x ˙ 2 d + α m x 1 3 + k 2 ( x 2 d − x 2 ) ) u=m(x_{1d}-x_1+\dot{x}_{2d}+\frac{\alpha}{m}x_1^{3}+k_2(x_{2d}-x_2)) u=m(x1dx1+x˙2d+mαx13+k2(x2dx2))(4)检验
检验是否实现目标: t → ∞ t\rightarrow \infty t e → 0 e\rightarrow0 e0 δ → 0 \delta\rightarrow0 δ0
{ δ = x 2 d − x 2 e ˙ = x ˙ 1 d − x 1 ˙ = x ˙ 1 d − x 2 x 2 d = x ˙ 1 d + k 1 e \begin{cases} \delta=x_{2d}-x_2 \\ \dot{e}=\dot{x}_{1d}-\dot{x_1}=\dot{x}_{1d}-x_2 \\ x_{2d}=\dot{x}_{1d}+k_1e \end{cases} δ=x2dx2e˙=x˙1dx1˙=x˙1dx2x2d=x˙1d+k1e推得 e ˙ = − k 1 e + δ \dot{e}=-k_1e+\delta e˙=k1e+δ
{ x 1 d − x 1 + x ˙ 2 d + α m x 1 3 − 1 m u = − k 2 ( x 2 d − x 2 ) δ ˙ = x ˙ 2 d − x ˙ 2 = x ˙ 2 d + α m x 1 3 − 1 m u \begin{cases} x_{1d}-x_1+\dot{x}_{2d}+\frac{\alpha}{m}x_1^{3}-\frac{1}{m}u=-k_2(x_{2d}-x_2) \\ \dot{\delta}=\dot{x}_{2d}-\dot{x}_2=\dot{x}_{2d}+\frac{\alpha}{m}x_1^{3}-\frac{1}{m}u \end{cases} {x1dx1+x˙2d+mαx13m1u=k2(x2dx2)δ˙=x˙2dx˙2=x˙2d+mαx13m1u推得 δ ˙ = − e − k 2 δ \dot{\delta}=-e-k_2\delta δ˙=ek2δ故有 [ e ˙ δ ˙ ] = [ − k 1 1 − 1 − k 2 ] [ e δ ] \begin{bmatrix} \dot{e} \\ \dot{\delta} \end{bmatrix}=\begin{bmatrix} -k_1 & 1 \\ -1 & -k_2 \end{bmatrix}\begin{bmatrix} e \\ \delta \end{bmatrix} [e˙δ˙]=[k111k2][eδ]这是个线性系统,通过反馈系统实现了线性化,Feedback Linearization。
线性系统状态矩阵: A = [ − k 1 1 − 1 − k 2 ] A=\begin{bmatrix} -k_1 & 1 \\ -1 & -k_2 \end{bmatrix} A=[k111k2] { λ 1 + λ 2 = ∧ = − k 1 − k 2 < 0 λ 1 λ 2 = [ − k 1 1 − 1 − k 2 ] = k 1 k 2 + 1 > 0 \begin{cases} \lambda_1 + \lambda_2=\wedge = -k_1 - k_2 < 0 \\ \lambda_1\lambda_2=\begin{bmatrix} -k_1 & 1 \\ -1 & -k_2 \end{bmatrix}=k_1k_2+1>0 \end{cases} λ1+λ2==k1k2<0λ1λ2=[k111k2]=k1k2+1>0即特征值 λ 1 , λ 2 \lambda_1,\lambda_2 λ1λ2均小于0,且系统平衡点 [ e ˙ δ ˙ ] = [ 0 0 ] \begin{bmatrix} \dot{e} \\ \dot{\delta} \end{bmatrix}=\begin{bmatrix} 0 \\ 0 \end{bmatrix} [e˙δ˙]=[00] e = 0 , δ = 0 e=0,\delta=0 e=0δ=0,即平衡点在Origin。故综合知系统是渐近稳定的,达成目标。

3 非线性自适应控制器

1中所阐述的Feedback Linearization方法基于前提假设:parameters is exactly known number,即system is exactly system。而非线性自适应控制器可以Adapt the unknown parameter。
非线性自适应控制器基于前提假设:
Parameters是常数或缓慢变化的数,满足 p a r a m e t e r ˙ = 0 \dot{parameter}=0 parameter˙=0
非线性自适应控制器由于模型参数 α \alpha α为未知常数/缓慢变化,故实际引用时应作估计值 a ^ \hat{a} a^,此时考虑估计误差: a ~ = a − a ^ \tilde{a}=a-\hat{a} a~=aa^估计误差随时间变化: a ~ ˙ = a ˙ − a ^ ˙ = − a ^ ˙ \dot{\tilde{a}}=\dot{a}-\dot{\hat{a}}=-\dot{\hat{a}} a~˙=a˙a^˙=a^˙系统目标需额外考虑: t → ∞ t\rightarrow\infty t,估计误差 a ~ → 0 。 \tilde{a}\rightarrow0。 a~0

4 Lyapunov-like Lemma

  1. V ≥ 0 V\geq0 V0
  2. V ˙ ≤ − g ( t ) \dot{V}\leq-g(t) V˙g(t),where g ( t ) ≥ 0 g(t)\geq0 g(t)0
  3. g ˙ ( t ) ∈ L ∞ \dot{g}(t)\in L_{\infty} g˙(t)L,if g ( t ) g(t) g(t) is bounded the g ( t ) g(t) g(t) is uniformly continuous;

Then lim ⁡ t → ∞ g ( t ) = 0 \lim_{t\rightarrow\infty}g(t)=0 limtg(t)=0

5 非线性自适应控制器——以非线性弹簧系统为例

(1)System State-Space Function
{ x 1 ˙ = x 2 x 2 ˙ = x ¨ = − α m x 1 3 + 1 m u \begin{cases} \dot{x_1}=x_2 \\ \dot{x_2}=\ddot{x}=-\frac{\alpha}{m}x_1^{3}+\frac{1}{m}u \end{cases} {x1˙=x2x2˙=x¨=mαx13+m1u其中,系统参数 α \alpha α为未知常数, α ˙ = 0 \dot{\alpha}=0 α˙=0,该系统为Chain of Integrator, u → x 2 → x 1 u\rightarrow x_2\rightarrow x_1 ux2x1
引入系统误差error: e = x 1 d − x 1 e=x_{1d}-x_1 e=x1dx1系统误差随时间变化: e ˙ = x ˙ 1 d − x ˙ 1 = x ˙ 1 d − x 2 \dot{e}=\dot{x}_{1d}-\dot{x}_1=\dot{x}_{1d}-x_2 e˙=x˙1dx˙1=x˙1dx2系统目标为: t → ∞ t\rightarrow \infty t e → 0 e\rightarrow 0 e0
(2)Find x 2 d x_{2d} x2d,使 x 1 → x 1 d x_1\rightarrow x_{1d} x1x1d
假设Lyapunov Function: V ( e ) = 1 2 e 2 V(e)=\frac{1}{2}e^{2} V(e)=21e2,李雅普诺夫函数随时间变化: V ˙ ( e ) = e e ˙ = e ( x ˙ 1 d − x 2 ) \dot{V}(e)=e\dot{e}=e(\dot{x}_{1d}-x_2) V˙(e)=ee˙=e(x˙1dx2)为实现系统目标 t → ∞ t\rightarrow \infty t e → 0 e\rightarrow 0 e0 V ˙ ( e ) \dot{V}(e) V˙(e)希望是ND,故令: x ˙ 1 d − x 2 d = − k 1 e \dot{x}_{1d}-x_{2d}=-k_1e x˙1dx2d=k1e即目标 x 2 d = x ˙ 1 d + k 1 e x_{2d}=\dot{x}_{1d}+k_1e x2d=x˙1d+k1e
(3)Design执行器输入u,使 x 2 → x 2 d x_2\rightarrow x_{2d} x2x2d
引入系统误差delta error: δ = x 2 d − x 2 \delta=x_{2d}-x_2 δ=x2dx2系统误差delta error随时间变化: δ ˙ = x 2 d ˙ − x 2 ˙ \dot{\delta}=\dot{x_{2d}}-\dot{x_2} δ˙=x2d˙x2˙系统目标为: t → ∞ t\rightarrow \infty t e → 0 e\rightarrow 0 e0 δ → 0 \delta\rightarrow 0 δ0
假设Lyapunov Function: V ( e , δ ) = 1 2 e 2 + 1 2 δ 2 V(e,\delta)=\frac{1}{2}e^{2}+\frac{1}{2}\delta^{2} V(e,δ)=21e2+21δ2李雅普诺夫函数随时间变化: V ˙ ( e , δ ) = e e ˙ + δ δ ˙ \dot{V}(e,\delta)=e\dot{e}+\delta\dot{\delta} V˙(e,δ)=ee˙+δδ˙代入 { e ˙ = x ˙ 1 d − x 2 x 2 d = x ˙ 1 d + k 1 e δ = x 2 d − x 2 \begin{cases} \dot{e}=\dot{x}_{1d}-x_2 \\ x_{2d}=\dot{x}_{1d}+k_1e \\ \delta = x_{2d} - x_2 \end{cases} e˙=x˙1dx2x2d=x˙1d+k1eδ=x2dx2整理得 e ˙ = δ − k 1 e \dot{e}=\delta-k_1e e˙=δk1e代入 V ˙ ( e , δ ) \dot{V}(e,\delta) V˙(e,δ),有: V ˙ ( e , δ ) = e ( δ − k 1 e ) + δ δ ˙ = − k 1 e 2 + δ ( e + δ ˙ ) \dot{V}(e,\delta)=e(\delta-k_1e)+\delta\dot{\delta}=-k_1e^{2}+\delta(e+\dot{\delta}) V˙(e,δ)=e(δk1e)+δδ˙=k1e2+δ(e+δ˙)其中, − k 1 e 2 -k_1e^{2} k1e2项为ND,希望 V ˙ ( e , δ ) \dot{V}(e,\delta) V˙(e,δ)为ND,则希望 δ ( e + δ ˙ ) \delta(e+\dot{\delta}) δ(e+δ˙)为ND。故令 e + δ ˙ = − k 2 δ e+\dot{\delta}=-k_2\delta e+δ˙=k2δ其中, δ ˙ = x 2 d ˙ − x 2 ˙ = x 2 d ˙ + α m x 1 3 − 1 m u \dot{\delta}=\dot{x_{2d}}-\dot{x_2}=\dot{x_{2d}}+\frac{\alpha}{m}x^{3}_1-\frac{1}{m}u δ˙=x2d˙x2˙=x2d˙+mαx13m1u
(4)因为parameter α \alpha α未知,故作估计值 α ^ \hat{\alpha} α^
系统估计误差tidle alpha error: α ~ = α ^ − α \tilde{\alpha}=\hat{\alpha}-\alpha α~=α^α系统估计误差tidle alpha error随时间变化: α ~ ˙ = α ^ ˙ − α ˙ = α ^ ˙ \dot{\tilde{\alpha}}=\dot{\hat{\alpha}}-\dot{\alpha}=\dot{\hat{\alpha}} α~˙=α^˙α˙=α^˙此时,系统目标为: t → ∞ t\rightarrow \infty t e → 0 e\rightarrow 0 e0 δ → 0 \delta\rightarrow 0 δ0 α ~ → 0 \tilde\alpha\rightarrow 0 α~0
假设Lyapunov Function: V ( e , δ , α ~ ) = 1 2 e 2 + 1 2 δ 2 + 1 2 α ~ 2 V(e,\delta,\tilde{\alpha})=\frac{1}{2}e^{2}+\frac{1}{2}\delta^{2}+\frac{1}{2}\tilde{\alpha}^{2} V(e,δ,α~)=21e2+21δ2+21α~2李雅普诺夫函数随时间变化: V ˙ ( e , δ , α ~ ) = e e ˙ + δ δ ˙ + α ~ α ~ ˙ = − k 1 e 2 + δ ( e + δ ˙ ) + α ~ a ^ ˙ = − k 1 e 2 + δ ( e + x ˙ 2 d + α m x 1 3 − 1 m u ) + α ~ a ^ ˙ \dot{V}(e,\delta,\tilde{\alpha})=e\dot{e}+\delta\dot{\delta}+\tilde{\alpha}\dot{\tilde{\alpha}}=-k_1e^{2}+\delta(e+\dot{\delta})+\tilde{\alpha}\dot{\hat{a}}=-k_1e^{2}+\delta(e+\dot{x}_2d+\frac{\alpha}{m}x^{3}_1-\frac{1}{m}u)+\tilde{\alpha}\dot{\hat{a}} V˙(e,δ,α~)=ee˙+δδ˙+α~α~˙=k1e2+δ(e+δ˙)+α~a^˙=k1e2+δ(e+x˙2d+mαx13m1u)+α~a^˙希望 V ˙ ( e , δ , α ~ ) \dot{V}(e,\delta,\tilde{\alpha}) V˙(e,δ,α~)是ND,令: e + x ˙ 2 d + α m x 1 3 − 1 m u = − k 3 δ e+\dot{x}_2d+\frac{\alpha}{m}x^{3}_1-\frac{1}{m}u=-k_3\delta e+x˙2d+mαx13m1u=k3δ其中, k 3 > 0 k_3>0 k3>0,称为Controller Gain。故有 u = α ^ x 1 3 + m e + m x ˙ 2 d + m k 3 δ u=\hat{\alpha}x^{3}_1+me+m\dot{x}_{2d}+mk_3\delta u=α^x13+me+mx˙2d+mk3δ代入 V ˙ ( e , δ , α ~ ) \dot{V}(e,\delta,\tilde{\alpha}) V˙(e,δ,α~),有 V ˙ ( e , δ , α ~ ) = − k 1 e 2 + δ ( − k 3 δ − 1 m α ~ x 1 3 ) + α ~ α ^ ˙ = − k 1 e 2 − k 3 δ 2 − α ~ ( 1 m x 1 3 δ − α ^ ˙ ) \dot{V}(e,\delta,\tilde{\alpha})=-k_1e^{2}+\delta(-k_3\delta-\frac{1}{m}\tilde{\alpha}x^{3}_1)+\tilde{\alpha}\dot{\hat{\alpha}}=-k_1e^{2}-k_3\delta^{2}-\tilde{\alpha}(\frac{1}{m}x^{3}_1\delta-\dot{\hat{\alpha}}) V˙(e,δ,α~)=k1e2+δ(k3δm1α~x13)+α~α^˙=k1e2k3δ2α~(m1x13δα^˙)其中, − k 1 e 2 -k_1e^{2} k1e2 − k 3 δ 2 -k_3\delta^{2} k3δ2为ND,而 − α ~ ( 1 m x 1 3 δ − α ^ ˙ ) -\tilde{\alpha}(\frac{1}{m}x^{3}_1\delta-\dot{\hat{\alpha}}) α~(m1x13δα^˙)很难ND,故令其为0,有 α ^ ˙ = 1 m x 1 3 δ \dot{\hat{\alpha}}=\frac{1}{m}x^{3}_1\delta α^˙=m1x13δ此时,由于对于 ∀ α ~ \forall\tilde{\alpha} α~,均有 V ˙ ( 0 , 0 , α ~ ) = 0 \dot{V}(0,0,\tilde{\alpha})=0 V˙(0,0,α~)=0,故 V ˙ \dot{V} V˙是NSD。
套用引理Lyapunov-like Lemma,有:

  1. V ≥ 0 V\geq0 V0满足;
  2. V ˙ ≤ − g ( t ) \dot{V}\leq-g(t) V˙g(t),令 g ( t ) = − k 1 e 2 − k 3 δ 2 g(t)=-k_1e^{2}-k_3\delta^{2} g(t)=k1e2k3δ2满足;
  3. g ˙ ( t ) = − 2 k 1 e e ˙ − 2 k 3 δ δ ˙ \dot{g}(t)=-2k_1e\dot{e}-2k_3\delta\dot{\delta} g˙(t)=2k1ee˙2k3δδ˙有界,满足;

故有 lim ⁡ t → 0 g ( t ) = 0 \lim_{t\rightarrow0}g(t)=0 limt0g(t)=0,即实现目标: t → ∞ t\rightarrow\infty t e → 0 e\rightarrow0 e0 δ → 0 \delta\rightarrow0 δ0
结果 α ^ = ∫ 0 t 1 m x 1 3 δ d t \hat{\alpha}=\int_{0}^{t}\frac{1}{m}x^{3}_1\delta dt α^=0tm1x13δdt代入u u = m e + m x ˙ 2 d + m k 3 δ + x 1 3 ∫ 0 t 1 m x 1 3 δ d t u=me+m\dot{x}_{2d}+mk_3\delta+x^{3}_1\int_{0}^{t}\frac{1}{m}x^{3}_1\delta dt u=me+mx˙2d+mk3δ+x130tm1x13δdt

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值