非线性系统稳定性分析:Lyapunov Direct Method and Lasalle‘s Theorem

1 Lyapunov Direct Method

1.1 Definite

(1)Positive Definite (PD) V ( 0 ) = 0 ; V ( x ) > 0 , ∀ x ∈ D − { 0 } ; V(0)=0;V(x)>0,\forall x\in D- \{0\}; V(0)=0;V(x)>0,xD{0};(2)Positive Semi Definite (PSD) V ( 0 ) = 0 ; V ( x ) ≥ 0 , ∀ x ∈ D − { 0 } ; V(0)=0;V(x)\geq 0,\forall x\in D- \{0\}; V(0)=0;V(x)0,xD{0};(3)Negative Definite (ND) V ( 0 ) = 0 ; V ( x ) < 0 , ∀ x ∈ D − { 0 } ; V(0)=0;V(x)< 0,\forall x\in D- \{0\}; V(0)=0;V(x)<0,xD{0};(4)Negative Semi Definite (NSD) V ( 0 ) = 0 ; V ( x ) ≤ 0 , ∀ x ∈ D − { 0 } ; V(0)=0;V(x)\leq 0,\forall x\in D- \{0\}; V(0)=0;V(x)0,xD{0};

1.2 Lyapunov Direct Method Definition

系统状态空间方程 x ˙ = f ( x ) \dot{x}=f(x) x˙=f(x),其中, x = 0 x=0 x=0是平衡点。即 f ( x = 0 ) = 0 f(x=0)=0 f(x=0)=0或者说 x ˙ ∣ x = 0 = 0 \dot{x}|_{x=0}=0 x˙x=0=0
假设存在一个函数 V V V
(1)如果 V V V是PD,而 V ˙ \dot{V} V˙是NSD,则平衡点 x = 0 x=0 x=0是稳定点;
(2)如果 V V V是PD,而 V ˙ \dot{V} V˙是ND,则平衡点 x = 0 x=0 x=0是渐近稳定点。

1.3 Lie Derivative

系统状态空间方程: [ x 1 ˙ x 2 ˙ ] = [ a x 1 b x 2 + c o s x 1 ] = f ( x ) \begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix}=\begin{bmatrix} ax_1 \\ bx_2+cosx_1 \end{bmatrix}=f(x) [x1˙x2˙]=[ax1bx2+cosx1]=f(x)假设Lyapunov Function: V = x 1 2 + x 2 2 V=x_1^{2}+x_2^2 V=x12+x22 V ˙ = x 1 x 1 ˙ + x 2 x 2 ˙ = [ 2 x 1 2 x 2 ] [ x 1 ˙ x 2 ˙ ] = [ ∂ V ∂ x 1 ∂ V ∂ x 2 ] [ f 1 f 2 ] = ▽ V f ( x ) = L f V ( x ) \dot{V}=x_1\dot{x_1}+x_2\dot{x_2}=\begin{bmatrix} 2x_1&2x_2 \end{bmatrix}\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix}=\begin{bmatrix} \frac{\partial V}{\partial x_1} & \frac{\partial V}{\partial x_2} \end{bmatrix}\begin{bmatrix} f_1 \\ f_2 \end{bmatrix}=\bigtriangledown Vf(x)=L_fV(x) V˙=x1x1˙+x2x2˙=[2x12x2][x1˙x2˙]=[x1Vx2V][f1f2]=Vf(x)=LfV(x) L f V ( x ) L_fV(x) LfV(x)即为Lie Derivative。

2 非线性系统稳定性分析——以单摆系统(Pendulum)为例

2.1 Pendulum without Friction

在这里插入图片描述
X轴受力分析,由牛顿第二定律: ∑ F x = m a x \sum F_x=ma_x Fx=max − m g s i n θ = m L θ ¨ -mgsin\theta=mL\ddot{\theta} mgsinθ=mLθ¨系统动态方程为 θ ¨ + g L s i n θ = 0 \ddot{\theta}+\frac{g}{L}sin\theta=0 θ¨+Lgsinθ=0 x 1 = θ x_1=\theta x1=θ x 2 = θ ˙ = x 1 ˙ x_2=\dot{\theta}=\dot{x_1} x2=θ˙=x1˙,有 { x 1 ˙ = x 2 x 2 ˙ = θ ¨ = − g L s i n x 1 \begin{cases} \dot{x_1}=x_2 \\ \dot{x_2}=\ddot{\theta}=-\frac{g}{L}sinx_1 \end{cases} {x1˙=x2x2˙=θ¨=Lgsinx1从系统能量的角度分析, E n e r g y = K i n e t i c + P o t e n t i a l Energy=Kinetic+Potential Energy=Kinetic+Potential,因此,假设Lyapunov Function: V = K + P = 1 2 m v 2 + m g h = 1 2 m L 2 x 2 2 + m g L ( 1 − c o s x 1 ) V=K+P=\frac{1}{2}mv^2+mgh=\frac{1}{2}mL^2x_2^2+mgL(1-cosx_1) V=K+P=21mv2+mgh=21mL2x22+mgL(1cosx1)李雅普诺夫函数随时间变化: V ˙ = L f V = [ ∂ V ∂ x 1 ∂ V ∂ x 2 ] [ f 1 f 2 ] = m g L x 2 s i n x 1 − m g L x 2 s i n x 1 = 0 \dot{V}=L_fV=\begin{bmatrix} \frac{\partial V}{\partial x_1} & \frac{\partial V}{\partial x_2} \end{bmatrix}\begin{bmatrix} f_1 \\ f_2 \end{bmatrix}=mgLx_2sinx_1-mgLx_2sinx_1=0 V˙=LfV=[x1Vx2V][f1f2]=mgLx2sinx1mgLx2sinx1=0由于(1) V V V是PD的;(2) V ˙ \dot{V} V˙是NSD的;故系统是Stability的。
从物理的角度解释: V V V代表能量, V ˙ \dot{V} V˙代表能量随时间变化,因为无摩擦,所以 V ˙ = 0 \dot{V}=0 V˙=0即能量始终保持不变,故系统是Stability,与数学推导一致。

2.2 Pendulum with Friction

在这里插入图片描述
X轴受力分析,由牛顿第二定律: ∑ F x = m a x \sum F_x=ma_x Fx=max − m g s i n θ − k L θ ˙ = m L θ ¨ -mgsin\theta-kL\dot{\theta}=mL\ddot{\theta} mgsinθkLθ˙=mLθ¨系统动态方程为 θ ¨ + g L s i n θ + k m θ ˙ = 0 \ddot{\theta}+\frac{g}{L}sin\theta+\frac{k}{m}\dot{\theta}=0 θ¨+Lgsinθ+mkθ˙=0 x 1 = θ x_1=\theta x1=θ x 2 = θ ˙ = x 1 ˙ x_2=\dot{\theta}=\dot{x_1} x2=θ˙=x1˙,有 { x 1 ˙ = x 2 x 2 ˙ = θ ¨ = − g L s i n x 1 − k m x 2 \begin{cases} \dot{x_1}=x_2 \\ \dot{x_2}=\ddot{\theta}=-\frac{g}{L}sinx_1-\frac{k}{m}x_2 \end{cases} {x1˙=x2x2˙=θ¨=Lgsinx1mkx2从系统能量的角度分析, E n e r g y = K i n e t i c + P o t e n t i a l Energy=Kinetic+Potential Energy=Kinetic+Potential,因此,假设Lyapunov Function: V = K + P = 1 2 m v 2 + m g h = 1 2 m L 2 x 2 2 + m g L ( 1 − c o s x 1 ) V=K+P=\frac{1}{2}mv^2+mgh=\frac{1}{2}mL^2x_2^2+mgL(1-cosx_1) V=K+P=21mv2+mgh=21mL2x22+mgL(1cosx1)李雅普诺夫函数随时间变化: V ˙ = L f V = [ ∂ V ∂ x 1 ∂ V ∂ x 2 ] [ f 1 f 2 ] = − k L 2 x 2 2 \dot{V}=L_fV=\begin{bmatrix} \frac{\partial V}{\partial x_1} & \frac{\partial V}{\partial x_2} \end{bmatrix}\begin{bmatrix} f_1 \\ f_2 \end{bmatrix}=-kL^2x_2^2 V˙=LfV=[x1Vx2V][f1f2]=kL2x22由于(1) V V V是PD的;(2)对于 V ˙ \dot{V} V˙ ∀ x = [ x 1 0 ] \forall x=\begin{bmatrix} x_1 & 0 \end{bmatrix} x=[x10]均有 V ˙ = 0 \dot{V}=0 V˙=0,因此 V ˙ \dot{V} V˙是NSD的。故系统是Stability。
从物理的角度解释: V V V代表能量, V ˙ \dot{V} V˙代表能量随时间变化,有摩擦,系统应为渐近稳定的,但数学推导结果表明,系统是Stability,矛盾。故引入The Invariance Principle——Lasalle’s Theorem扩展李雅普诺夫第二方法。

3 Lasalle’s Theorem

引入一个system(1): x ˙ = f ( x ) \dot{x}=f(x) x˙=f(x)Theorem:The equilibrium point x = 0 x=0 x=0 of the autonomous system(1) is asymptotically stable if there exists a function V ( x ) V(x) V(x) satisfying.
(1) V ( x ) V(x) V(x) positive definite ∀ x ∈ D \forall x \in D xD, where we assume that 0 ∈ D 0\in D 0D;
(2) V ˙ ( x ) \dot{V}(x) V˙(x) is negative semi definite in a bounded region, R ∈ D R\in D RD;
(3) V ˙ ( x ) \dot{V}(x) V˙(x) does not vanish identically along any trajectory in R R R, other than the null solution x = 0 x=0 x=0.
其中,把区域内所有使得 V ˙ ( x ) = 0 \dot{V}(x)=0 V˙(x)=0的点的集合叫做 R R R

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值