Domain Adversarial Training见:
李宏毅机器学习——领域适应Domain Adaptation_iwill323的博客-CSDN博客_领域适应
迁移学习参见2022CS231n PPT笔记 - 迁移学习_iwill323的博客-CSDN博客_cs231n ppt
目录
任务和数据集
任务
這份作業的任務是Transfer Learning中的Domain Adversarial Training。也就是左下角的那一塊。

现在拥有标注的source data和未标注的target data,其中source data可能和target data有一定的联系。我们想仅使用 source data 训练一个模型,然后用在target data的推断。
数据集
数据来源 here
使用photos和the labels进行训练,预测hand-drawn graffiti的类别
● Label: 10 classes (numbered from 0 to 9).
● Training (source data): 5000 (32, 32) RGB 真实照片(with label).
● Testing (target data): 100000 (28, 28) gray scale 手写图像
文件结构如下图:

方法论:DaNN
DaNN的核心:讓Soucre Data和Target Data經過Feature Extractor映射在同個Distribution上,这样在source domain上训练的classifier可以用于target domain

如何讓前半段的模型輸入兩種不同分布的資料,輸出卻是同個分布呢?
最簡單的方法就是像 GAN 一樣導入一個discriminator,这里叫Domain Classifier,讓它判斷經過Feature Extractor後的Feature是源自於哪個domain,讓Feature Extractor學習如何產生Feature以騙過Domain Classifier。 持久下來,通常Feature Extractor都會打贏Domain Classifier,因為Domain Classifier的Input來自於Feature Extractor,而且對Feature Extractor來說domain classification和label classification的任務並沒有衝突。

如此一來,我們就可以確信不管是哪一個Domain,Feature Extractor都會把它產生在同一個Feature Distribution上。
导包
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function
import torch.optim as optim
import torchvision.transforms as transforms
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import pandas as pd
import cv2
import os
from d2l import torch as d2l
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
数据处理
显示图片
def no_axis_show(img, title='', cmap=None):
# imshow, and set the interpolation mode to be "nearest"。
fig = plt.imshow(img, interpolation='nearest', cmap=cmap)
# do not show the axes in the images.
fig.axes.get_xaxis().set_visible(False)
fig.axes.get_yaxis().set_visible(False)
plt.title(title)
titles = ['horse', 'bed', 'clock', 'apple', 'cat', 'plane', 'television', 'dog', 'dolphin', 'spider']
plt.figure(figsize=(18, 18))
for i in range(10):
plt.subplot(1, 10, i+1)
fig = no_axis_show(plt.imread(f'/kaggle/input/ml2022-spring-hw11/real_or_drawing/train_data/{i}/{500*i}.bmp'), title=titles[i])

plt.figure(figsize=(18, 18))
for i in range(10):
plt.subplot(1, 10, i+1)
fig = no_axis_show(plt.imread(f'/kaggle/input/ml2022-spring-hw11/real_or_drawing/test_data/0/' + str(i).rjust(5, '0') + '.bmp'))

Canny Edge Detection
对于这个任务,我们有一个special domain knowledge:塗鴉的時候通常只會畫輪廓,我們可以根據這點將source data做點邊緣偵測處理,讓source data更像target data一點。
用cv2.Canny做Canny Edge Detection非常方便,只需要兩個參數: low_threshold, high_threshold。
cv2.Canny(image, low_threshold, high_threshold)
簡單來說就是當邊緣值超過high_threshold,就確定它是edge。如果只有超過low_threshold,那就先判斷一下再決定是不是edge。下面对source data做Canny Edge Detection
titles = ['horse', 'bed', 'clock', 'apple', 'cat', 'plane', 'television', 'dog', 'dolphin', 'spider']
plt.figure(figsize=(12, 12))
original_img = plt.imread(f'/kaggle/input/ml2022-spring-hw11/real_or_drawing/train_data/0/0.bmp')
plt.subplot(1, 5, 1)
no_axis_show(original_img, title='original')
gray_img = cv2.cvtColor(original_img, cv2.COLOR_RGB2GRAY)
plt.subplot(1, 5, 2)
no_axis_show(gray_img, title='gray scale', cmap='gray')
canny_50100 = cv2.Canny(gray_img, 50, 100)
plt.subplot(1, 5, 3)
no_axis_show(canny_50100, title='Canny(50, 100)', cmap='gray')
canny_150200 = cv2.Canny(gray_img, 150, 200)
plt.subplot(1, 5, 4)
no_axis_show(canny_150200, title='Canny(150, 200)', cmap='gray')
canny_250300 = cv2.Canny(gray_img, 250, 300)
plt.subplot(1, 5, 5)
no_axis_show(canny_250300, title='Canny(250, 300)', cmap='gray')

low_threshold, high_threshold大小可调,他们越大,轮廓曲线就越少
transforms
这里使用了lambda表达式
source_transform = transforms.Compose([
# Turn RGB to grayscale. (Bacause Canny do not support RGB images.)
transforms.Grayscale(),
# cv2 do not support skimage.Image, so we transform it to np.array,
# and then adopt cv2.Canny algorithm.
transforms.Lambda(lambda x: cv2.Canny(np.array(x), 170, 300)),
# Transform np.array back to the skimage.Image.
transforms.ToPILImage(),
# 50% Horizontal Flip. (For Augmentation)
transforms.RandomHorizontalFlip(),
# Rotate +- 15 degrees. (For Augmentation), and filled with zero
# if there's empty pixel after rotation.
transforms.RandomRotation(15, fill=(0,)),
# Transform to tensor for model inputs.
transforms.ToTensor(),
])
target_transform = transforms.Compose([
# Turn RGB to grayscale.
transforms.Grayscale(),
# Resize: size of source data is 32x32, thus we need to enlarge the size of target data from 28x28 to 32x32。
transforms.Resize((32, 32)),
# 50% Horizontal Flip. (For Augmentation)
transforms.RandomHorizontalFlip(),
# Rotate +- 15 degrees. (For Augmentation), and filled with zero
# if there's empty pixel after rotation.
transforms.RandomRotation(15, fill=(0,)),
# Transform to tensor for model inputs.
transforms.ToTensor(),
])
dataset和数据加载
可以使用torchvision.ImageFolder的形式加载数据
batch_train = 256
batch_test = 1024
num_workers = 2
source_dataloader = DataLoader(source_dataset, batch_size=batch_train, shuffle=True, num_workers=num_workers, pin_memory=True, drop_last=True)
target_dataloader = DataLoader(target_dataset, batch_size=batch_train, shuffle=True, num_workers=num_workers, pin_memory=True, drop_last=True)
test_dataloader = DataLoader(target_dataset, batch_size=batch_test, shuffle=False, num_workers=num

本文介绍了李宏毅机器学习课程中关于Transfer Learning的Domain Adversarial Training(DaNN)方法。任务是使用source data训练模型,并应用于target data。通过Canny Edge Detection处理source data,采用VGG-like的Feature Extractor和Domain Classifier,利用Gradient Reversal Layer进行训练。实验中,lambda值的调整影响模型性能,过高可能影响Label Predictor。文章还探讨了动态调整lambda的策略以及利用DANN模型生成伪标签进行进一步学习。
最低0.47元/天 解锁文章
1795





