【滤波跟踪】经典的无迹卡尔曼滤波和改进的自适应UKF,根据观测的误差自适应调节观测误差,以达到提高滤波精度的作用附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🌿 往期回顾可以关注主页,点击搜索

🔥 内容介绍

在诸多非线性滤波算法中,无迹卡尔曼滤波(Unscented Kalman Filter, UKF)因其无需线性化模型且能有效处理非线性系统状态估计问题而备受青睐。然而,传统的UKF算法依赖于对系统噪声和观测噪声的精确假设,这在实际应用中往往难以满足。尤其当观测噪声存在未知的时变特性或非高斯分布时,固定的观测噪声协方差矩阵将导致滤波精度显著下降甚至发散。为了解决这一问题,基于观测误差自适应调节的UKF算法应运而生,其核心思想是利用观测信息的特性,实时估计或调整观测噪声协方差矩阵,从而提升滤波跟踪精度。本文将深入探讨经典UKF算法的原理,并着重阐述自适应UKF算法如何根据观测误差自适应调节观测噪声,进而达到提高滤波精度的目标。

一、经典无迹卡尔曼滤波(UKF)算法回顾

UKF算法是一种基于Unscented变换(UT)的非线性滤波方法。相比于扩展卡尔曼滤波(EKF)中对非线性函数进行泰勒展开线性化的做法,UKF通过UT变换选取一组称为Sigma点的样本点,并将其通过非线性状态方程和观测方程进行传播,利用传播后的Sigma点来近似状态分布的均值和协方差。

二、自适应UKF算法:基于观测误差的自适应调节

  1. 基于Sage-Husa噪声统计估计器的方法: Sage-Husa噪声统计估计器是一种在线估计噪声均值和协方差的递推算法。可以将该估计器用于估计观测噪声的均值和协方差,然后将其结果用于UKF算法中。这种方法的优点是计算量较小,易于实现。然而,其估计精度受到递推算法参数的影响。

  2. 基于极大似然估计(MLE)的方法: 这类方法将观测噪声协方差矩阵 𝑅𝑘Rk 视为待估计的参数,并通过极大似然估计来获得其最优值。通常,需要构建似然函数,并使用迭代优化算法(如EM算法)来求解MLE问题。这种方法理论上具有较好的估计精度,但计算复杂度较高。

  3. 基于模糊逻辑或神经网络的自适应方法: 这类方法利用模糊逻辑或神经网络来建立观测误差与观测噪声协方差矩阵之间的映射关系。通过训练模糊系统或神经网络,可以实现对观测噪声的自适应调节。这种方法的优点在于能够处理复杂的非线性噪声特性,但需要大量的训练数据。

三、自适应UKF算法的精度提升机理分析

  • 减小滤波发散的风险: 当实际的观测噪声大于假设的观测噪声时,传统的UKF算法会过度依赖观测数据,导致滤波结果不稳定甚至发散。自适应UKF算法通过增大 𝑅𝑘Rk,降低了观测数据对滤波结果的影响,从而提高了滤波器的鲁棒性,降低了发散的风险。

  • 提高对噪声变化的跟踪能力: 实际应用中,观测噪声往往是时变的。自适应UKF算法能够根据新息序列的特性,实时调整 𝑅𝑘Rk,从而能够更好地跟踪噪声的变化,保持较高的滤波精度。

  • 改善滤波器的收敛速度: 当初始观测噪声协方差矩阵的假设与实际值相差较大时,自适应UKF算法可以通过快速调整 𝑅𝑘Rk,加速滤波器的收敛过程,缩短滤波器的建立时间。

四、结论与展望

基于观测误差自适应调节的UKF算法是一种有效的提高滤波精度的手段。通过利用新息序列的统计特性,实时估计或调节观测噪声协方差矩阵,该算法能够适应变化的观测环境,降低滤波发散的风险,提高对噪声变化的跟踪能力,并改善滤波器的收敛速度。然而,不同类型的自适应UKF算法具有不同的适用范围和计算复杂度,在实际应用中需要根据具体情况进行选择。

未来的研究方向可以包括以下几个方面:

  • 更精确的观测噪声估计方法: 研究更加精确、鲁棒的观测噪声估计方法,例如结合多传感器信息融合、利用深度学习等技术。

  • 更高效的自适应算法: 设计计算复杂度更低、收敛速度更快的自适应算法,以满足实时性要求较高的应用场景。

  • 针对特定应用的优化: 针对不同的应用领域(如自动驾驶、目标跟踪等),设计专门的自适应UKF算法,以达到最佳的滤波性能。

  • 考虑系统噪声的自适应调节: 除了观测噪声,系统噪声的准确性同样重要。未来的研究可以探索同时自适应调节系统噪声和观测噪声的UKF算法。

⛳️ 运行结果

🔗 参考文献

[1] 刘伟龙,王丽芳,廖承林,等.基于模型融合与自适应无迹卡尔曼滤波算法的锂离子电池SOC估计[J].汽车工程, 2017, 39(9):7.DOI:10.19562/j.chinasae.qcgc.2017.09.004.

[2] 马艳,刘小东.状态自适应无迹卡尔曼滤波算法及其在水下机动目标跟踪中的应用[J].兵工学报, 2019, 40(2):8.DOI:CNKI:SUN:BIGO.0.2019-02-016.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值