【WSN】基于LEACH和HEED的WSN路由协议研究与改进附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

无线传感器网络(Wireless Sensor Networks, WSNs)作为一种新兴的分布式感知网络,凭借其低功耗、自组织、大规模部署等特点,在环境监测、智能家居、军事侦察等领域展现出广阔的应用前景。然而,WSNs面临着诸多挑战,其中能量效率是影响其长期运行的关键因素。由于传感器节点通常由电池供电且难以更换,因此如何在有限的能量下尽可能延长网络寿命成为了WSNs路由协议设计的重要目标。分簇路由协议作为一种有效的能量管理策略,受到了广泛关注。LEACH (Low-Energy Adaptive Clustering Hierarchy) 和 HEED (Hybrid, Energy-Efficient, Distributed clustering approach) 是两种经典的分布式分簇路由协议,本文将深入研究这两种协议的原理、优缺点,并探讨针对其局限性的改进方法,旨在提高WSN的能量效率和延长网络寿命。

1. LEACH协议研究

LEACH协议是一种典型的基于分簇的无线传感器网络路由协议,其核心思想是将网络划分为若干簇,并在每个簇中选举出一个簇头节点。簇头节点负责收集簇内成员节点的数据,进行数据融合处理,并将融合后的数据发送到基站(Base Station, BS)。LEACH协议运行分为若干轮,每轮都包含簇建立阶段和稳定数据传输阶段。

1.1 LEACH协议原理

  • 簇建立阶段:

    • 簇头广播: 成为簇头节点的节点向网络广播自己的ID。

    • 节点加入簇: 其他非簇头节点根据接收到的簇头广播信号的强度,选择加入信号强度最强的簇头,并向该簇头发送加入请求。

    • 簇头建立调度表: 簇头节点接收到簇内节点的加入请求后,根据节点ID建立一个调度表,决定每个节点的数据发送时隙,避免簇内数据传输冲突。

  • 稳定数据传输阶段:

    • 簇内成员节点根据簇头节点建立的调度表,在分配的时隙内向簇头节点发送数据。

    • 簇头节点接收到簇内节点的数据后,进行数据融合处理,减少数据冗余,然后将融合后的数据发送到基站。

1.2 LEACH协议的优点

  • **分布式算法:**LEACH协议采用分布式算法,不需要全局网络信息,具有良好的可扩展性。

  • 能量均衡:

     簇头节点的轮换可以实现网络能量的均衡消耗,避免个别节点因长期担任簇头而过早耗尽能量。

  • 数据融合:

     簇头节点对数据进行融合处理,减少了发送到基站的数据量,降低了网络通信能耗。

1.3 LEACH协议的缺点

  • **簇头选举的随机性:**LEACH协议的簇头选举完全基于随机概率,无法保证簇头节点在网络中的分布均匀,可能导致某些区域簇头节点过于密集,而另一些区域则簇头节点稀少,从而影响网络的整体性能。

  • 簇头节点的能量负担:

     簇头节点承担着数据收集、融合和转发的任务,能量消耗远大于普通成员节点。如果簇头节点的位置离基站较远,则会消耗更多的能量用于数据传输,从而缩短网络寿命。

  • **单跳通信:**LEACH协议中簇头节点直接将数据发送到基站,当基站距离簇头节点较远时,单跳传输会消耗大量的能量,不适合大规模、远距离的WSN。

  • 忽略节点剩余能量:

     LEACH协议在簇头选举时,没有考虑节点的剩余能量,可能导致剩余能量较低的节点被选为簇头,加速其能量耗尽。

2. HEED协议研究

HEED协议是LEACH协议的改进版本,它在簇头选举过程中引入了更多因素,以提高簇头选择的合理性,从而优化网络性能。

2.1 HEED协议原理

HEED协议也分为若干轮,每轮包括初始化阶段、迭代阶段和最终簇头选择阶段。

  • 初始化阶段:

    • 每个节点设定一个初始概率CHprob作为成为簇头的初始概率。

    • 计算初始簇头代价CMCM = Cprob * Eresidual / Einitial,其中Eresidual是节点的剩余能量,Einitial是节点的初始能量。

    • 每个节点广播自己的CM值。

  • 迭代阶段:

    • 进行若干次迭代,每次迭代中,每个节点根据接收到的邻居节点的CM值和自己的CM值,调整成为簇头的概率Cprob

    • 如果节点接收到任何一个邻居节点声明自己是簇头,并且自己的CM值比邻居节点低,则该节点决定加入该簇。

    • 每次迭代之后,未决定状态的节点的Cprob值增加一个固定值δ,直到Cprob达到上限pmax

  • 最终簇头选择阶段:

    • 经过若干次迭代后,如果一个节点仍然没有加入任何簇,则该节点强制成为簇头。

    • 所有簇头节点广播自己的簇头状态。

2.2 HEED协议的优点

  • 考虑节点剩余能量:

     HEED协议在簇头选择中考虑了节点的剩余能量,使得剩余能量高的节点更有可能成为簇头,从而延长网络寿命。

  • 代价函数优化:

     HEED协议引入了代价函数,可以根据不同的应用场景进行调整,从而更好地适应不同的网络需求。

  • 分布均匀的簇头:

     通过迭代调整簇头概率,HEED协议可以有效地生成分布均匀的簇头,避免LEACH协议中簇头分布不均的问题。

2.3 HEED协议的缺点

  • 迭代次数影响性能:

     HEED协议需要进行多次迭代才能完成簇头选择,迭代次数过多会增加网络开销,迭代次数过少则可能导致簇头选择不够优化。

  • 参数设置复杂:

     HEED协议的参数较多,如δpmax等,参数设置需要根据具体的网络环境进行调整,才能达到最佳性能。

  • 没有考虑节点距离:

     HEED协议在簇头选择时,没有考虑节点距离基站的远近,可能导致离基站较远的节点被选为簇头,增加数据传输能耗。

3. LEACH和HEED协议的改进研究

针对LEACH和HEED协议的局限性,研究者提出了许多改进方案,旨在提高WSN的能量效率和延长网络寿命。这些改进方案主要集中在以下几个方面:

3.1 簇头选举策略的改进

  • 基于能量感知的簇头选举:

     在LEACH协议的基础上,将节点的剩余能量纳入簇头选举的考虑因素。例如,可以修改阈值函数T(n),使得剩余能量高的节点具有更高的成为簇头的概率。

  • 基于距离的簇头选举:

     在LEACH和HEED协议的基础上,考虑节点到基站的距离,避免距离基站较远的节点被选为簇头。可以通过增加距离因子到簇头选举的概率或者代价函数中来实现。

  • 混合簇头选举策略:

     将能量、距离和节点密度等多种因素综合考虑,设计更加合理的簇头选举策略,以提高簇头选择的质量。例如,可以采用模糊逻辑或者多属性决策等方法,对各种因素进行加权处理,从而选择出最优的簇头节点。

  • 考虑节点移动性:

     对于移动WSN,需要考虑节点的移动性对簇结构的影响。可以采用预测节点移动轨迹的方法,或者根据节点的移动速度动态调整簇头选举的概率,以维持稳定的簇结构。

3.2 多跳路由的引入

  • 簇间多跳路由:

     在LEACH和HEED协议的基础上,引入簇间多跳路由,允许簇头节点之间进行数据传输,从而将数据逐步传递到基站。这可以有效减少簇头节点到基站的单跳距离,降低能量消耗。

  • 簇内多跳路由:

     在簇内采用多跳路由,允许簇内成员节点通过多个中间节点将数据发送到簇头节点。这可以减少簇内节点的传输距离,降低能量消耗,尤其适用于簇内节点分布较为稀疏的情况。

  • 分层路由协议:

     将网络划分为多个层次,每个层次采用不同的路由协议。例如,底层采用LEACH或者HEED协议进行分簇,高层采用多跳路由协议进行数据传输。

3.3 数据融合算法的优化

  • 压缩感知数据融合:

     利用压缩感知理论,在簇头节点对数据进行压缩,减少数据量,从而降低数据传输能耗。

  • 关联规则挖掘数据融合:

     利用关联规则挖掘算法,在簇头节点挖掘数据之间的关联关系,只发送关键数据,减少数据冗余。

  • 神经网络数据融合:

     利用神经网络对数据进行建模,只发送模型的参数,而不是原始数据,从而大幅减少数据传输量。

3.4 网络拓扑结构的优化

  • 不规则分簇:

     传统的LEACH和HEED协议采用规则分簇,例如将网络划分为等大小的簇。然而,在实际应用中,由于节点分布不均匀或者环境因素的影响,不规则分簇可能更加有效。可以根据节点的密度和位置,动态调整簇的大小和形状,从而优化网络拓扑结构。

  • 双层簇结构:

     在传统的簇结构的基础上,引入第二层簇,形成双层簇结构。第一层簇负责收集数据,第二层簇负责数据融合和传输。这可以进一步降低能量消耗,并提高网络的鲁棒性。

4. 结论与展望

LEACH和HEED协议作为经典的WSN分簇路由协议,为能量高效的数据传输提供了重要的思路。然而,它们也存在一些局限性。通过对LEACH和HEED协议的研究与改进,我们可以有效地提高WSN的能量效率,延长网络寿命。未来的研究方向包括:

  • 智能化簇头选举:

     结合机器学习和人工智能技术,设计更加智能化的簇头选举算法,能够根据网络环境的变化自适应地调整参数,提高簇头选择的准确性和效率。

  • 动态路由调整:

     针对动态变化的WSN环境,设计能够实时调整路由策略的动态路由协议,以适应节点移动、链路失效等情况,提高网络的可靠性和鲁棒性。

  • 跨层优化设计:

     将路由协议的设计与其他网络层面的优化相结合,例如,与MAC层协议、安全协议等进行联合优化,从而实现更佳的整体性能。

  • 面向特定应用场景的定制化设计:

     针对不同的应用场景,例如环境监测、智能家居等,设计定制化的路由协议,以满足特定场景的需求。

⛳️ 运行结果

🔗 参考文献

[1] 董国勇,彭力,吴凡,等.基于权值和代价函数的WSNs非均匀分簇路由算法[J].传感器与微系统, 2015, 34(3):4.DOI:10.13873/J.1000-9787(2015)03-0134-03.

[2] 谢璐.无线传感器网络分簇路由协议研究[D].重庆大学,2013.DOI:10.7666/d.D355603.

[3] 梁玉珠.基于动态分簇的低能耗WSN路由协议的研究[D].延边大学,2015.DOI:10.7666/d.D798879.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值