基于CBAM-CNN卷积神经网络预测研究附Python代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着大数据时代的到来,如何从海量数据中提取有价值的信息并进行准确预测,已成为各个领域研究的焦点。传统的预测模型在处理复杂非线性数据时往往存在局限性。近年来,深度学习,特别是卷积神经网络(CNN),以其强大的特征提取能力,在图像识别、自然语言处理等领域取得了巨大成功,并逐渐被应用于各种预测任务。然而,标准的CNN模型在处理一些包含复杂空间和通道关联性的预测问题时,其性能仍有进一步提升的空间。为了解决这一问题,注意力机制被引入到CNN中,旨在使模型能够更有效地关注数据中的关键信息。其中,Convolutional Block Attention Module (CBAM) 是一种结合了通道注意力和空间注意力的有效机制,已被证明能够显著提升CNN模型的性能。

本研究旨在基于CBAM-CNN卷积神经网络构建预测模型,深入探讨其在特定预测任务中的有效性,并分析其相对于传统CNN模型的优势。我们将详细阐述CBAM-CNN模型的理论基础、模型结构以及具体的实现过程,并通过实验验证其在预测精度和鲁棒性方面的表现。

理论基础

2.1 卷积神经网络(CNN)

卷积神经网络是一种专门用于处理具有网格状拓扑结构数据的神经网络,例如图像数据。其核心组成部分包括卷积层、池化层和全连接层。

  • 卷积层:

     通过卷积核(filter)对输入数据进行卷积操作,提取局部特征。卷积核在输入数据上滑动并与局部区域进行内积运算,生成特征图。不同的卷积核可以提取不同的特征,如边缘、纹理等。

  • 池化层:

     对特征图进行下采样,降低数据的维度,同时保留主要特征。常用的池化方法包括最大池化和平均池化。池化操作有助于减少模型的参数数量,提高模型的计算效率,并增强模型的鲁棒性,使其对输入数据的微小变化不敏感。

  • 全连接层:

     将经过卷积和池化操作得到的特征图展平,连接到全连接层,进行分类或回归等任务。全连接层可以学习到高级别的抽象特征,并将这些特征映射到最终的输出结果。

CNN通过层层堆叠的卷积层和池化层,能够从原始数据中逐步提取出从低级到高级的抽象特征,这使得其在处理具有层级结构的数据时表现出色。

2.2 注意力机制

注意力机制的核心思想是让模型能够动态地调整对输入数据不同部分的关注程度。在深度学习中,注意力机制通常通过权重分配来实现,即给数据中更重要的部分赋予更高的权重。这使得模型能够更加专注于与任务相关的关键信息,而忽略不相关的噪声。

常见的注意力机制包括通道注意力、空间注意力和混合注意力。通道注意力关注不同特征通道的重要性,空间注意力关注特征图不同空间位置的重要性。

2.3 CBAM模块

Convolutional Block Attention Module (CBAM) 是一种轻量级的通用模块,可以无缝地集成到任何卷积神经网络中。CBAM顺序地推理通道和空间维度上的注意力权重,然后将这些权重与输入特征图相乘,以实现自适应特征细化。

CBAM由两个子模块组成:通道注意力模块(Channel Attention Module)和空间注意力模块(Spatial Attention Module)。

  • 通道注意力模块:

     旨在让模型关注输入特征图中哪些通道更重要。它通过对输入特征图进行全局平均池化和全局最大池化,然后将两个池化结果分别通过一个共享的多层感知机(MLP)进行处理。最后,将两个MLP的输出相加,并通过Sigmoid激活函数得到通道注意力权重。这些权重与输入特征图的每个通道相乘,实现通道级别的特征加权。

  • 空间注意力模块:

     旨在让模型关注输入特征图中哪些空间位置更重要。它首先将经过通道注意力加权后的特征图沿着通道维度进行全局平均池化和全局最大池化,得到两个二维特征图。然后将这两个特征图沿着通道维度拼接,并通过一个卷积层和Sigmoid激活函数得到空间注意力权重。这些权重与通道注意力加权后的特征图逐元素相乘,实现空间位置的特征加权。

CBAM通过串联通道注意力和空间注意力,使得模型能够同时关注“什么”是重要的(通道注意力)和“在哪里”是重要的(空间注意力),从而更有效地提取和利用信息。

3. 基于CBAM-CNN的预测模型构建

基于CBAM-CNN的预测模型通常是在标准的CNN模型基础上,在适当的位置(例如在卷积层之后)插入CBAM模块。具体的模型结构可以根据不同的预测任务和数据特性进行调整。一个典型的CBAM-CNN预测模型结构如下:

  1. 输入层:

     接收原始数据。

  2. 卷积层1:

     应用卷积操作提取浅层特征。

  3. CBAM模块1:

     在卷积层1之后插入CBAM模块,对浅层特征进行通道和空间维度的注意力加权。

  4. 池化层1:

     对加权后的特征图进行池化操作。

  5. 卷积层2:

     应用卷积操作提取深层特征。

  6. CBAM模块2:

     在卷积层2之后插入CBAM模块,对深层特征进行注意力加权。

  7. 池化层2:

     对加权后的特征图进行池化操作。

  8. Flatten层:

     将经过多层卷积和池化得到的特征图展平。

  9. 全连接层:

     连接到全连接层,进行高层特征的组合和映射。

  10. 输出层:

     根据具体的预测任务输出预测结果(例如,回归任务输出预测值,分类任务输出类别概率)。

在实际构建模型时,可以根据数据复杂度和模型性能需求,调整卷积层、池化层和CBAM模块的数量和参数。同时,合适的激活函数、损失函数和优化器也是构建高性能预测模型的关键。

4. 结论与展望

本研究基于CBAM-CNN卷积神经网络构建了预测模型,并通过实验验证了其在特定预测任务中的有效性。实验结果表明,CBAM-CNN模型相较于标准CNN模型在预测精度等方面表现出更优越的性能。这证明了注意力机制,特别是CBAM模块,在增强CNN特征提取能力和提高预测精度方面的潜力。

CBAM-CNN模型在预测领域的应用前景广阔。未来可以进一步探索其在以下方面的研究:

  • 应用于更复杂的预测任务:

     例如,时间序列预测、高维数据预测等。

  • 与其他注意力机制结合:

     研究不同注意力机制的组合对预测性能的影响。

  • 模型结构的优化:

     探索更有效的CBAM-CNN模型结构,以适应不同的预测场景。

  • 解释性研究:

     深入研究CBAM模块如何影响模型的决策过程,提高模型的可解释性。

  • 实际应用:

     将CBAM-CNN模型应用于实际生产环境中的预测问题,例如金融预测、交通流量预测、疾病预测等。

⛳️ 运行结果

🔗 参考文献

[1] 钟吴君,李培强,涂春鸣.基于EEMD-CBAM-Bi LSTM的牵引负荷超短期预测[J].电工技术学报, 2024(21).

[2] 林宗缪,马超,胡冬.基于改进YOLOv8卷积神经网络的稻田苗期杂草检测方法[J].湖北农业科学, 2024, 63(8):17-22.

[3] 高振斌,张毅,宿绍莹.基于CBAM-CNN-BiGRU的Morse信号智能识别译码算法研究[J].无线电工程, 2022, 52(9):1519-1524.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值