【模型预测控制MPC】使用离散、连续、线性或非线性模型对预测控制进行建模附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在现代控制理论领域,模型预测控制(Model Predictive Control,MPC)凭借其卓越的性能和处理复杂系统约束的能力,已成为一种备受青睐的先进控制策略。其核心思想在于,在每一个采样时刻,MPC利用系统的数学模型来预测系统未来一段时间内的动态行为,并在此基础上求解一个开环最优控制问题,从而确定当前时刻的控制输入。然而,要实现有效的预测和优化,对被控系统的精确数学模型是至关重要的。根据被控系统的特性和建模需求,我们可以采用离散、连续、线性或非线性模型来描述系统动态,进而构建相应的MPC控制器。本文将深入探讨使用不同类型的数学模型对模型预测控制进行建模的方法、优势与挑战。

1. 基于模型预测控制的基本原理回顾

在深入探讨不同模型类型之前,有必要简要回顾MPC的基本原理。MPC在一个滚动的时域内运行。在每个控制周期开始时,MPC控制器执行以下步骤:

  • 状态估计:

     利用传感器测量和状态观测器等方法,获取当前时刻系统的状态信息。

  • 未来预测:

     利用系统的数学模型,预测系统在未来一个预测时域(Prediction Horizon,NpNp)内的状态和输出。这个预测过程是基于当前状态和一系列假设的未来控制输入序列。

  • 开环优化:

     在一个控制时域(Control Horizon,Nc≤NpNc≤Np)内,求解一个在线优化问题,通常是最小化一个包含跟踪误差、控制输入能量以及满足系统约束(如状态约束、控制输入约束等)的目标函数。这个优化问题的解是一系列最优的未来控制输入。

  • 控制输入实施:

     将优化得到的未来控制输入序列中的第一个输入量应用于实际系统。

  • 时域滚动:

     将预测时域和控制时域向未来移动一个采样周期,并在下一个控制周期重复上述过程。

从上述流程可以看出,系统的数学模型在预测未来行为、构建优化问题以及满足约束条件方面扮演着核心角色。模型的精确性和选择直接影响MPC的性能、计算复杂度和适用范围。

2. 基于不同类型模型的MPC建模

根据系统内在特性和建模的精度要求,我们可以选择以下不同类型的数学模型来构建MPC控制器:

2.1. 基于离散时间模型的MPC建模

离散时间模型通常是通过对连续时间系统进行采样或离散化得到的。对于数字控制系统而言,使用离散时间模型进行建模是更为自然的选择,因为它直接与计算机的采样和处理过程相对应。

优势:
* 直接适用于数字控制系统。
* 对于线性系统,预测模型是线性的,优化问题通常是凸二次规划问题,可以快速可靠地求解,计算负担相对较小。
* 丰富的现有线性系统控制理论和工具可以直接应用。

挑战:
* 对连续时间系统进行离散化会引入采样误差,尤其是在采样周期较大时。
* 线性模型只能近似描述非线性系统,在非线性程度较强的情况下,预测精度会下降,影响控制性能。

    基于非线性离散时间模型的MPC建模: 非线性模型的预测过程通常采用数值积分或迭代方法进行。由于非线性的存在,预测未来的状态和输出不再是简单的矩阵运算,计算量通常更大。在线优化问题通常转化为非线性规划(Nonlinear Programming, NLP)问题,其目标函数和约束条件可以是任意非线性函数。

    优势:
    * 更准确地描述非线性系统的动态行为,提高预测精度。
    * 适用于更广泛的实际控制问题,如化工过程、机器人控制等。

    挑战:
    * 非线性预测过程计算量大,可能不适用于实时控制。
    * 非线性规划问题通常是非凸的,可能存在多个局部最优解,求解难度大且耗时。
    * 需要选择合适的数值方法进行预测和优化求解。

    2.2. 基于连续时间模型的MPC建模

    连续时间模型更符合物理系统的实际行为,通常以常微分方程(ODE)的形式表示。

      基于线性连续时间模型的MPC建模: 在MPC的离散控制周期内,需要将连续时间模型用于预测未来时刻的状态和输出。这通常通过将连续时间模型离散化来实现,例如使用欧拉法、龙格-库塔法等数值积分方法。离散化后的模型便成为前述的线性离散时间模型,后续的建模和优化过程与基于线性离散时间模型的MPC类似。

      优势:
      * 更直接地反映系统的物理特性,便于理解和建模。
      * 可以利用成熟的连续时间系统分析和设计工具。

      挑战:
      * 需要进行离散化处理,引入离散化误差。
      * 在MPC的框架下,最终还是需要在离散时间域内进行预测和优化。

        基于非线性连续时间模型的MPC建模: 与基于非线性离散时间模型类似,非线性连续时间模型的预测过程通常需要采用数值积分方法。在每个采样周期内,通过数值积分求解未来预测时域内的微分方程,得到未来的状态和输出。在线优化问题同样转化为非线性规划(NLP)问题。

        优势:
        * 最准确地描述非线性连续时间系统的动态行为。
        * 适用于复杂的物理系统建模。

        挑战:
        * 预测过程需要在线进行数值积分,计算量大且耗时。
        * 优化问题通常是非凸非线性规划问题,求解困难。
        * 需要选择合适的数值积分和优化算法。

        3. 模型选择的考量因素

        选择合适的数学模型对于MPC的成功实施至关重要。以下是一些关键的考量因素:

        • 系统特性:

           系统是线性的还是非线性的?非线性程度有多高?

        • 建模精度要求:

           对模型精度的要求有多高?

        • 计算资源限制:

           可用于在线计算的计算资源有多少?(CPU速度、内存等)

        • 采样周期:

           控制系统的采样周期是多大?

        • 实时性要求:

           控制系统对实时性要求有多高?

        • 建模和辨识的难度:

           获取精确模型的难度如何?是否需要进行系统辨识?

        • 现有的工具和算法:

           是否有成熟的工具和算法支持特定类型的模型?

        4. 不同模型类型的权衡与选择

        在实际应用中,需要在模型的准确性、计算复杂度和实时性之间进行权衡。

        • 线性离散时间模型:

           通常是首选,尤其是在系统接近线性或非线性程度不高的场景下。其计算效率高,易于实现。但对于强非线性系统,其性能可能不佳。

        • 非线性离散时间模型:

           适用于需要精确描述非线性系统的场景。虽然计算量大,但随着计算能力的提升,其应用越来越广泛。需要选择高效的数值方法和优化算法。

        • 连续时间模型:

           通常用于基于物理原理的建模,更直观。在MPC框架下,最终需要进行离散化。对于精确的数值模拟和离线分析非常有价值。

        • 线性化非线性模型:

           对于弱非线性系统,可以在工作点附近对非线性模型进行线性化,然后使用线性MPC。这是一种常见的折中方案,兼顾了精度和计算效率。

        • 混杂模型:

           对于包含连续和离散动态的系统,可能需要采用混杂模型。

        6. 结论

        模型预测控制的建模是其核心环节,基于离散、连续、线性或非线性模型各有其优缺点和适用范围。线性离散时间模型因其计算效率和易于实现性在工业应用中占据主导地位,而基于非线性模型的MPC则在需要精确描述非线性动态的复杂系统中展现出优越性。选择合适的模型需要综合考虑系统特性、精度要求、计算资源和实时性等因素。随着计算能力的不断提升和先进优化算法的发展,基于非线性模型的MPC的应用将越来越广泛。未来的研究方向包括发展更高效的非线性预测和优化算法,以及在线模型辨识和自适应MPC技术,以进一步提升MPC在复杂系统控制中的性能和鲁棒性。有效的模型构建、验证和更新是实现高性能MPC控制的关键。

        ⛳️ 运行结果

        🔗 参考文献

        [1] 包哲静.支持向量机在智能建模和模型预测控制中的应用[D].浙江大学,2007.DOI:CNKI:CDMD:1.2007.079094.

        [2] 赵国荣,盖俊峰,胡正高,等.非线性模型预测控制的研究进展[J].海军航空工程学院学报, 2014, 29(3):8.DOI:10.7682/j.issn.1673-1522.2014.03.001.

        [3] 游杰.基于参数变化模型的非线性系统辨识及其预测控制研究[D].浙江大学,2014.

        📣 部分代码

        🎈 部分理论引用网络文献,若有侵权联系博主删除

         👇 关注我领取海量matlab电子书和数学建模资料 

        🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

        🌈 各类智能优化算法改进及应用
        生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
        🌈 机器学习和深度学习时序、回归、分类、聚类和降维

        2.1 bp时序、回归预测和分类

        2.2 ENS声神经网络时序、回归预测和分类

        2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

        2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

        2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
        2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

        2.7 ELMAN递归神经网络时序、回归\预测和分类

        2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

        2.9 RBF径向基神经网络时序、回归预测和分类

        2.10 DBN深度置信网络时序、回归预测和分类
        2.11 FNN模糊神经网络时序、回归预测
        2.12 RF随机森林时序、回归预测和分类
        2.13 BLS宽度学习时序、回归预测和分类
        2.14 PNN脉冲神经网络分类
        2.15 模糊小波神经网络预测和分类
        2.16 时序、回归预测和分类
        2.17 时序、回归预测预测和分类
        2.18 XGBOOST集成学习时序、回归预测预测和分类
        2.19 Transform各类组合时序、回归预测预测和分类
        方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
        🌈图像处理方面
        图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
        🌈 路径规划方面
        旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
        🌈 无人机应用方面
        无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
        🌈 通信方面
        传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
        🌈 信号处理方面
        信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
        🌈电力系统方面
        微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
        🌈 元胞自动机方面
        交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
        🌈 雷达方面
        卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
        🌈 车间调度
        零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

        👇

        评论
        添加红包

        请填写红包祝福语或标题

        红包个数最小为10个

        红包金额最低5元

        当前余额3.43前往充值 >
        需支付:10.00
        成就一亿技术人!
        领取后你会自动成为博主和红包主的粉丝 规则
        hope_wisdom
        发出的红包
        实付
        使用余额支付
        点击重新获取
        扫码支付
        钱包余额 0

        抵扣说明:

        1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
        2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

        余额充值