非线性模型预测控制MPC问题求解研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

模型预测控制 (Model Predictive Control, MPC) 作为一种先进的控制策略,自其诞生以来便因其优异的性能,在流程工业、航空航天、汽车工程、电力系统等众多领域得到了广泛的应用。MPC的核心思想是基于被控对象的数学模型,在每个采样时刻,通过求解一个在线优化问题,计算出一系列未来的控制输入序列,并只将序列的第一个控制输入施加到被控对象上。在下一个采样时刻,重新预测系统状态,并再次求解优化问题,如此循环往复,实现滚动优化。

然而,当被控对象呈现非线性特性时,MPC的在线优化问题便转化为一个非线性优化问题。与线性MPC相比,非线性MPC (Nonlinear Model Predictive Control, NMPC) 的在线求解面临着更大的挑战。非线性系统的复杂性、优化问题非凸性、计算负担以及实时性要求等因素,使得NMPC的理论研究和实际应用都更为困难。因此,针对非线性MPC问题的求解研究,是当前控制领域一个活跃且重要的研究方向。

本文将深入探讨非线性模型预测控制MPC问题的求解研究,首先阐述NMPC问题的数学模型和基本框架,然后分析其求解面临的主要挑战,接着重点介绍当前主流的NMPC求解方法,包括基于优化的方法和基于学习的方法,并对这些方法的优缺点进行比较分析,最后展望未来NMPC求解的研究方向。

一、非线性MPC问题求解面临的主要挑战

相对于线性MPC,NMPC的求解面临着以下主要挑战:

  1. 非线性系统动力学模型:

    非线性模型使得系统状态的预测变得复杂,需要采用数值积分或非线性离散化方法进行求解,增加了计算复杂度。

  2. 非线性优化问题:

    NMPC的优化问题通常是非凸的,可能存在多个局部最优解。找到全局最优解通常是困难的,且在线求解过程中需要快速收敛到可接受的局部最优解。

  3. 计算负担:

    求解非线性优化问题通常需要迭代计算,每次迭代都需要进行非线性模型的计算和约束的处理。随着预测时域的增加,优化问题的维度也会增加,计算负担呈指数级增长。

  4. 实时性要求:

    MPC是一种在线控制策略,要求在每个采样周期内完成优化问题的求解,并将控制输入施加到被控对象上。对于高速动态系统,采样周期往往非常短,这对求解算法的计算效率提出了极高的要求。

  5. 约束处理:

    非线性约束的处理比线性约束更为复杂,需要采用特殊的算法和技巧,增加了求解的难度。

  6. 稳定性与收敛性保证:

    尽管MPC具有固有的反馈机制,但NMPC的理论分析,特别是对闭环系统的稳定性和鲁棒性分析,比线性MPC更为复杂。确保在线求解算法的收敛性和每次求解得到的控制输入的有效性,对于闭环系统的稳定运行至关重要。

二、当前主流的非线性MPC求解方法

当前主流的NMPC求解方法可以大致分为两大类:基于优化的方法和基于学习的方法。

2.1 基于优化的方法

基于优化的方法直接或间接求解上述非线性优化问题。根据求解方法的不同,又可以细分为:

  • 直接法 (Direct Methods):

    直接将动态优化问题转化为静态非线性规划 (Nonlinear Programming, NLP) 问题。常用的直接法包括:

    • 直接单发法 (Direct Single Shooting):

      将控制输入序列作为优化变量,通过多次迭代求解,找到最优的控制序列。然而,单发法对初始猜测敏感,且在预测时域较长时,对系统模型的精度要求较高。

    • 直接多发法 (Direct Multiple Shooting):

      将状态和控制输入都作为优化变量,并将整个预测时域分成若干个区间。通过在每个区间内对动力学方程进行离散化,并引入连续性约束来连接各区间。多发法比单发法更稳定,对初始猜测不敏感,更容易并行计算,但优化问题的维度较高。

    • 直接配点法 (Direct Collocation):

      采用多项式或样条函数逼近状态和控制轨迹,并在预测时域内的特定配点处满足动力学方程和约束条件。配点法可以有效地处理高维系统和复杂约束,但需要选择合适的基函数和配点,且计算量较大。

直接法求解非线性规划问题通常采用迭代算法,如序列二次规划 (Sequential Quadratic Programming, SQP)、内点法 (Interior-Point Methods) 等。这些算法需要在每次迭代中计算目标函数和约束的梯度和Hessian矩阵(或其近似),这对于非线性系统来说计算量较大。

  • 间接法 (Indirect Methods):基于庞特里亚金最大值原理 (Pontryagin's Maximum Principle, PMP),将动态优化问题转化为边值问题 (Boundary Value Problem, BVP)。通过求解BVP来获得最优控制。间接法可以得到解析形式的最优控制,但求解BVP通常非常困难,且对系统的光滑性要求较高,难以处理复杂约束。因此,在实际NMPC应用中,间接法相对较少使用。

  • 基于近似模型的优化方法:为了降低计算负担,可以采用近似模型来代替原始的非线性系统模型进行优化。常用的近似模型包括:

    • 线性化模型:

      在工作点附近对非线性系统进行线性化,然后求解线性的MPC问题。这种方法计算效率高,但只在工作点附近有效,鲁棒性较差。

    • 局部非线性模型:

      在工作点附近采用简单的非线性模型(如多项式模型)近似原始系统。

    • 机器学习模型:

      利用机器学习方法(如神经网络)学习系统的输入输出关系,并将其作为预测模型。

基于近似模型的优化方法可以显著降低在线计算量,但模型的近似误差会影响控制性能,甚至导致系统不稳定。因此,需要谨慎选择近似模型,并考虑近似误差对控制性能的影响。

2.2 基于学习的方法

随着机器学习和人工智能技术的快速发展,基于学习的方法也逐渐应用于非线性MPC的求解中。这类方法的核心思想是通过离线学习或在线学习的方式,直接或间接获取最优控制策略。

  • 离线学习基于优化的策略:

    可以通过离线求解大量的NMPC优化问题,收集最优状态和控制输入数据,然后训练一个控制器(如神经网络)来近似最优的反馈控制律。这种方法将计算负担转移到离线训练阶段,在线运行非常快,但需要大量的训练数据,且学习到的策略可能无法泛化到训练数据之外的状态空间。

  • 强化学习 (Reinforcement Learning, RL):

    将NMPC问题转化为一个强化学习问题,通过智能体与环境的交互,学习得到最优的控制策略。RL方法可以直接学习端到端的控制策略,不需要显式的系统模型,具有较强的适应性和鲁棒性。然而,RL的训练过程通常需要大量的试错,训练效率较低,且难以保证学习到的策略的稳定性和安全性。

  • 基于模型的强化学习 (Model-Based Reinforcement Learning):

    结合模型预测控制和强化学习的优点。通过学习系统模型,然后利用学习到的模型进行规划和控制。这种方法可以提高学习效率,并有助于保证控制性能,但模型学习的准确性直接影响控制效果。

基于学习的方法为NMPC的求解提供了新的思路,尤其是在系统模型未知或难以建立的情况下。然而,如何保证学习到的控制策略的稳定性和安全性,以及如何解决样本效率低的问题,仍然是需要深入研究的挑战。

三、未来研究方向

非线性MPC问题求解仍然是一个活跃的研究领域,未来研究方向主要集中在以下几个方面:

  1. 提高求解算法的效率和鲁棒性:

    进一步发展高效的非线性优化算法,减少在线计算负担,并增强算法对模型误差和外部扰动的鲁棒性。例如,利用并行计算、定制化优化算法、基于梯度下降的快速迭代方法等。

  2. 结合机器学习和优化:

    探索更紧密的将机器学习和优化方法相结合,例如,利用机器学习来加速优化过程,或者利用优化来改进学习模型的准确性。

  3. 实时可行性保证:

    研究如何在有限的计算时间内获得可行且具有良好性能的控制输入,特别是在遇到复杂约束和系统突变的情况下。这涉及到可行性恢复策略、热启动技术等。

  4. 理论分析和稳定性保证:

    深入研究基于各种求解方法的NMPC闭环系统的理论性质,包括稳定性、鲁棒性和性能保证。对于基于学习的方法,如何提供严格的理论保证是亟待解决的问题。

  5. 分布式和协同式NMPC:

    针对大规模互联系统,研究分布式和协同式NMPC的求解方法,降低单个控制器的计算负担,提高系统的整体性能。

  6. 基于云平台和边缘计算的NMPC:

    利用云计算和边缘计算的强大计算能力,为复杂的NMPC问题求解提供支持。

结论

非线性模型预测控制MPC是处理复杂非线性系统控制的强大工具。然而,其在线优化问题求解的复杂性是非线性MPC推广应用的主要瓶颈。本文对非线性MPC问题的数学模型、挑战以及主流求解方法进行了深入探讨。基于优化的方法通过直接或间接求解优化问题,是目前应用最广泛的方法;而基于学习的方法为解决模型未知和计算效率问题提供了新的思路。未来,结合优化和学习的混合方法,提高求解算法的效率和鲁棒性,以及提供严格的理论保证,将是非线性MPC求解研究的重要方向。随着计算能力的提升和算法的不断创新,非线性MPC必将在更多领域发挥重要作用,为复杂非线性系统的精确控制提供有力支撑。

⛳️ 运行结果

🔗 参考文献

[1] 徐胜红,孙庆祥,顾文锦,等.非线性预测控制模型方法综述[J].海军航空工程学院学报, 2007(6):4.DOI:10.3969/j.issn.1673-1522.2007.06.009.

[2] 刘斌.非线性系统建模及预测控制若干问题研究[D].浙江大学,2004.

[3] 袁新宇.模型预测控制及其应用研究[D].浙江大学,2002.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值