【优化调度】基于改进遗传算法的公交车调度排班优化的研究与实现附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍


 随着城市化进程的加速,公共交通在缓解交通拥堵、促进城市可持续发展中扮演着愈发重要的角色。公交车调度排班作为公共交通运营管理的核心环节,其效率直接影响着公交服务的质量和运营成本。传统的调度排班方法往往依赖于经验或简单的启发式规则,难以适应复杂多变的实际运营需求。本文深入研究了基于改进遗传算法的公交车调度排班优化问题。首先,对公交车调度排班问题进行了数学建模,明确了目标函数和约束条件。其次,针对标准遗传算法在收敛速度和寻优能力上的局限性,提出了一种改进的遗传算法,包括新的编码策略、适应度函数设计、选择、交叉和变异操作。通过引入局部搜索和精英保留机制,进一步提高了算法的全局搜索能力和收敛效率。最后,通过实际案例数据对所提出的改进遗传算法进行了仿真实验,并与传统方法进行了对比分析。实验结果表明,改进遗传算法在优化公交车调度排班方面表现出显著优势,能够有效降低运营成本,提高车辆和驾驶员的利用率,缩短乘客候车时间,从而提升整体公交服务水平。本文的研究成果为智能公交调度系统的开发提供了理论依据和技术支持,具有重要的理论意义和实践价值。

关键词: 公交车调度;排班优化;遗传算法;改进算法;智能交通系统

1. 引言

城市公共交通是城市经济社会运行的动脉,其发展水平是衡量一个城市现代化程度的重要标志。在快速发展的城市中,公交系统面临着巨大的挑战,包括日益增长的乘客需求、复杂的路网结构、多变的交通状况以及有限的资源配置。公交车调度排班作为公交运营管理的关键环节,其优化目标在于在满足乘客出行需求、遵守各项运营规章制度的前提下,最大限度地提高车辆和驾驶员的利用率,降低运营成本,并缩短乘客的候车时间,提升服务质量。

传统的公交车调度排班方法多依赖于人工经验,或采用简单的数学规划和启发式算法。这些方法在面对大规模、多约束、动态变化的公交调度问题时,往往暴露出计算复杂性高、难以获得全局最优解、对突发事件响应慢等问题。随着计算机技术和人工智能的飞速发展,智能优化算法为解决这类复杂组合优化问题提供了新的思路和方法。

遗传算法(Genetic Algorithm, GA)作为一种模拟自然选择和遗传机制的全局优化搜索算法,因其并行处理能力、良好的鲁棒性和全局寻优能力,在解决各种复杂优化问题中得到了广泛应用。然而,标准遗传算法在处理大规模问题时,也存在收敛速度较慢、易陷入局部最优等问题。因此,如何根据公交车调度排班问题的特点,对遗传算法进行有针对性的改进,以提高其求解效率和寻优能力,成为当前研究的热点。

本文旨在深入探讨基于改进遗传算法的公交车调度排班优化问题。通过对公交车调度排班问题进行精确的数学建模,并针对性地对遗传算法进行改进,包括编码方式、适应度函数、遗传操作及引入局部搜索等策略,旨在构建一个高效、实用的公交车调度排班优化模型。

2. 公交车调度排班问题描述与数学建模

公交车调度排班问题是一个复杂的组合优化问题,其核心在于合理分配车辆和驾驶员资源,以满足线路运营要求和乘客出行需求。一个典型的公交车调度排班问题通常包括以下几个子问题:

  • 车辆调度问题 (Vehicle Scheduling Problem, VSP):

     旨在确定每辆公交车的行驶路线和发车时刻,以满足所有预定班次的运输需求,并最小化车辆总数或总行驶里程。

  • 驾驶员排班问题 (Driver Scheduling Problem, DSP):

     在车辆调度方案的基础上,为驾驶员分配任务,以满足工作时间、休息时间、加班限制等规定,并最小化驾驶员总数或加班费用。

  • 整合调度排班问题 (Integrated Scheduling Problem, ISP):

     同时考虑车辆和驾驶员的调度,以实现整体最优。

本文主要关注整合调度排班问题,并将其定义为一个多目标优化问题。

2.1 问题假设

为了简化问题并突出核心,本文做出以下假设:

  • 公交线路、站点、班次时间表等基本信息已知。

  • 车辆类型和数量已知,且所有车辆性能相同。

  • 驾驶员数量已知,且所有驾驶员均具备驾驶相应车辆的资质。

  • 不考虑突发故障、交通事故等不可控因素对调度排班的影响。

  • 不考虑车辆维修和保养时间。

2.2 目标函数

公交车调度排班的目标是多方面的,主要包括经济性目标和服务质量目标。本文将主要优化以下目标:

  1. 最小化车辆总数:

     减少购置成本和维护成本。

  2. 最小化驾驶员总数:

     降低人力成本。

  3. 最小化车辆空驶里程:

     提高车辆利用率,节约燃料。

  4. 最小化驾驶员超时工作时间或加班费:

     遵守劳动法规,保障驾驶员权益。

  5. 最大化乘客满意度(隐含目标,通过优化班次衔接、减少候车时间等实现)。

由于多目标优化的复杂性,本文将这些目标进行加权求和,转化为一个单一目标函数,或采用层次分析法分阶段优化。此处,我们主要以最小化总运营成本(包括车辆成本和驾驶员成本)为主要目标,同时考虑车辆和驾驶员的利用率。

图片

2.3 约束条件

公交车调度排班需要满足一系列严格的约束条件,主要包括:

  1. 班次覆盖约束:

     所有预定班次必须被车辆完整覆盖。

  2. 车辆容量约束:

     每辆车的载客量不得超过其最大容量。

  3. 车辆连续性约束:

     每辆车在完成一个任务后,必须有足够的时间到达下一个任务的起始点。

  4. 驾驶员工作时间约束:

     驾驶员的单次工作时间、总工作时间、连续驾驶时间、休息时间等必须符合相关法规(例如,中华人民共和国劳动法,或各地区交通运输管理部门的规定)。

  5. 驾驶员休息约束:

     驾驶员在完成一定工作时间后,必须有规定时长的休息。

  6. 驾驶员任务衔接约束:

     驾驶员在完成一个任务后,需要有合理的休息时间才能开始下一个任务。

  7. 车辆停放约束:

     车辆在非运营时段需停放在指定场站。

  8. 驾驶员交接班约束:

     确保驾驶员在指定地点进行交接班。

3. 改进遗传算法设计

标准遗传算法在处理大规模复杂优化问题时,容易出现早熟收敛、收敛速度慢、局部搜索能力不足等问题。针对公交车调度排班问题的特点,本文对遗传算法进行了一系列改进,以提高其求解性能。

3.1 编码策略

编码是遗传算法的基础。为了有效地表示公交车调度排班方案,本文采用一种混合编码策略。

  • 车辆调度编码:

     采用基于班次的排列编码。每个染色体代表一个车辆调度方案,其基因序列表示班次的执行顺序。例如,一个基因位上的值代表一个班次,基因的排列顺序表示车辆完成这些班次的顺序。由于车辆数量是待优化的变量之一,因此需要设计一种机制来表示车辆的分配。可以采用一种“分隔符”编码,即在班次序列中插入特殊符号来分隔不同车辆执行的班次序列。

  • 驾驶员排班编码:

     在车辆调度方案确定的基础上,针对每辆车所执行的班次序列,采用另一部分基因来表示驾驶员的分配。例如,可以为每个车辆任务链(一个车辆从出场到回场的所有班次)分配一个或多个驾驶员。每个基因位表示一个驾驶员,其值表示该驾驶员承担的任务段。

3.2 初始种群生成

初始种群的质量对遗传算法的收敛速度和最终解的质量有重要影响。本文采用随机生成与贪婪策略相结合的方式来生成初始种群。

  • 随机生成:

     随机生成一定数量的染色体,确保种群多样性。

  • 贪婪生成:

     采用一种简单的贪婪策略生成部分初始解。例如,在车辆调度部分,优先分配车辆给最早开始的班次;在驾驶员排班部分,优先为驾驶员分配能最大化其工作时间的任务,以减少空闲时间。这些基于贪婪策略生成的解虽然不一定是全局最优,但能提供较好的初始点,加速算法收敛。

3.3 适应度函数设计

适应度函数是衡量染色体优劣的标准,它直接反映了个体解对目标函数的优化程度。本文的适应度函数设计应充分考虑目标函数中的各项指标以及约束条件。

由于本文的目标是最小化成本,因此适应度函数可以设计为目标函数的倒数形式或经过适当变换使其最大化,同时对不满足约束条件的解施加惩罚。

图片

Fitness=1/(F+Penalty)

3.4 选择操作

选择操作根据个体的适应度值,从当前种群中选择优良个体进入下一代。本文采用轮盘赌选择和精英保留策略相结合的方式。

  • 轮盘赌选择:

     赋予适应度高的个体更大的被选择概率,体现“优胜劣汰”的原则。

  • 精英保留:

     将当前种群中适应度最高的若干个体(精英个体)直接复制到下一代,以防止最优解在遗传过程中丢失,加速算法收敛。

3.5 交叉操作

交叉操作模拟生物的基因重组,是产生新个体的主要方式,对算法的全局搜索能力至关重要。针对本文的混合编码,设计了相应的交叉操作。

  • 车辆调度交叉:

     可以采用部分匹配交叉(PMX)、顺序交叉(OX)等适用于排列编码的交叉方式。例如,在PMX中,随机选择两个交叉点,交换父代染色体在交叉点之间的基因片段,并调整其他基因以保持合法性。

  • 驾驶员排班交叉:

     在车辆调度部分保持不变的情况下,对驾驶员的分配进行交叉。可以采用单点交叉或多点交叉,交换两个父代染色体中特定驾驶员任务段的基因信息。

3.6 变异操作

变异操作引入随机性,增加种群多样性,有助于跳出局部最优。

  • 车辆调度变异:

     随机选择一个基因位,将其值与其他基因位的值进行交换,或者随机将一个班次移动到序列中的另一个位置。

  • 驾驶员排班变异:

     随机选择一个驾驶员的任务段,将其分配给另一个可用的驾驶员,或者随机改变一个驾驶员的任务顺序。

3.7 局部搜索机制

为了弥补遗传算法在局部搜索能力上的不足,本文在遗传算法的每次迭代中引入局部搜索机制。在生成新一代种群后,对部分精英个体或随机选择的个体进行局部优化。

例如,对于一个车辆调度方案,可以尝试调整相邻班次的顺序,或者将某个班次从一辆车转移到另一辆车,从而观察是否能降低成本或减少空驶里程。对于驾驶员排班,可以尝试交换两个驾驶员的任务,或者调整一个驾驶员的工作段,使其更符合工作时间规定或减少加班。通过局部搜索,可以在遗传算法的全局搜索基础上,进一步精细化解的质量。

4. 结论与展望

本文针对公交车调度排班这一复杂的组合优化问题,提出了基于改进遗传算法的解决方案。通过对问题进行详细的数学建模,并从编码、初始化、适应度函数、遗传操作以及引入局部搜索机制等方面对标准遗传算法进行了有针对性的改进。仿真实验结果表明,改进遗传算法在降低车辆和驾驶员数量、减少空驶里程和加班费用、优化总运营成本等方面均取得了显著成效,验证了其在解决公交车调度排班问题中的有效性和优越性。

本文的研究成果为智能公交调度系统的开发提供了重要的理论依据和技术支持。未来,可以从以下几个方面进一步深入研究:

  1. 多目标优化:

     进一步研究多目标遗传算法,直接处理最小化成本和最大化服务质量等多个冲突目标,而非简单加权求和,以获得Pareto最优解集。

  2. 动态调度:

     考虑公交运营中的实时动态变化,如突发交通拥堵、车辆故障、客流量波动等,研究基于实时数据的在线动态调度算法。

  3. 集成多种优化算法:

     将遗传算法与其他智能优化算法(如粒子群优化、模拟退火等)或启发式规则相结合,形成混合智能算法,以期获得更优的解。

  4. 实际系统开发与部署:

     将研究成果转化为实际的公交调度管理系统,并进行大规模的实际应用测试和优化,以检验其在真实运营环境下的性能和鲁棒性。

  5. 驾驶员工作满意度:

     在目标函数中进一步细化考虑驾驶员的满意度因素,例如避免过长等待时间、优化交接班地点等,实现经济效益与人文关怀的平衡。

⛳️ 运行结果

图片

图片

图片

图片

🔗 参考文献

[1] 张文贵.基于遗传算法的公交车辆调度优化研究[D].中国地质大学(北京)[2025-05-28].DOI:CNKI:CDMD:2.2007.066661.

[2] 赵迪.基于遗传算法的集配中心作业调度优化问题研究[D].北京交通大学,2010.DOI:10.7666/d.y1780707.

[3] 郑波.遗传算法在公交车辆调度优化中的应用研究[D].南京农业大学,2014.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值