https://www.maixj.net/ict/float16-32-64-19912
float16/32/64对神经网络计算的影响
神经网络的计算,或者说深度学习的计算,全都是浮点数。浮点数的类型分16/32/64(128位的不再考虑范围内,numpy和python最大只到float64),选择哪一种浮点数类型,对神经网络的计算有不同的影响。以下是近期的学习总结:
(1)目前业界深度学习的标准是BF16,一种16位的浮点数,据说Google的TPU已经支持,未来Intel的芯片也会支持;
(2)我们在一般计算上的,通过numpy得到的16位浮点数,是FP16,不是BF16;FP16是IEEE754-2008的标准;这两个标准,在能够表示的数值的范围上有区别;