float16/32/64对神经网络计算的影响

本文探讨了浮点数精度(float16, float32, float64)对神经网络计算的不同影响,包括内存占用、计算速度、精度损失及计算稳定性的挑战。业界标准是BF16,但FP16在numpy中易导致精度不足的问题。采用float32作为计算标准可以平衡内存和精度,而float16可降低内存需求但可能影响计算速度。teapot库决定使用float32并避免数据类型提升,同时提出数据集使用float16、权重使用float32的方案,但牺牲了numba加速的可能性。" 119951503,7947649,普通人的声音赚钱秘籍:六个实用方法,['经验分享'],"['声音赚钱', '音频平台', '主播', '配音', '录制课程', '有声书', '变现方法']
摘要由CSDN通过智能技术生成

https://www.maixj.net/ict/float16-32-64-19912

float16/32/64对神经网络计算的影响

 

神经网络的计算,或者说深度学习的计算,全都是浮点数。浮点数的类型分16/32/64(128位的不再考虑范围内,numpy和python最大只到float64),选择哪一种浮点数类型,对神经网络的计算有不同的影响。以下是近期的学习总结:

(1)目前业界深度学习的标准是BF16,一种16位的浮点数,据说Google的TPU已经支持,未来Intel的芯片也会支持;

(2)我们在一般计算上的,通过numpy得到的16位浮点数,是FP16,不是BF16FP16是IEEE754-2008的标准;这两个标准,在能够表示的数值的范围上有区别;



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值