mxnet makeloss

这篇博客介绍了如何使用MXNet库实现公平人脸识别中的Triplet Loss函数,包括代码实例和参数解释。作者详细展示了如何计算损失并更新权重和偏置。核心内容涉及深度学习中的三元组损失优化算法在人脸识别中的应用。
摘要由CSDN通过智能技术生成

 

https://github.com/jacke121/Fairface-Recognition-Solution

https://github.com/paranoidai/Fairface-Recognition-Solution/blob/7f12bc4462cc765fe8d7a7fa820c63bfe2cc9121/train/pair_wise_loss.py

好几种loss函数:

if loss_type =='triplet':

 

 

# -*- coding=utf-8 -*-

import mxnet as mx
import numpy as np
import logging

logging.basicConfig(level=logging.INFO)

x = mx.sym.Variable('data')
y = mx.sym.FullyConnected(data=x, num_hidden=1)
label = mx.sym.Variable('label')
loss = mx.sym.MakeLoss(mx.sym.square(y - label))
pred_loss = mx.sym.Group([mx.sym.BlockGrad(y), loss])
ex = pred_loss.simple_bind(mx.cpu(), data=(32, 2))

# test
test_data = mx.nd.array(np.random.random(size=(32, 2)))
test_label = mx.nd.array(np.random.random(size=(32, 1)))

ex.forward(is_train=True, data=test_data, label=test_label)
ex.backward()

print ex.arg_dict
fc_w = ex.arg_dict['fullyconnected0_weight'].asnumpy()
fc_w_grad = ex.grad_arrays[1].asnumpy()
fc_bias = ex.arg_dict['fullyconnected0_bias'].asnumpy()
fc_bias_grad = ex.grad_arrays[2].asnumpy()

logging.info('fc_weight:{}, fc_weights_grad:{}'.format(fc_w, fc_w_grad))
logging.info('fc_bias:{}, fc_bias_grad:{}'.format(fc_bias, fc_bias_grad))

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值