GroundingDINO 测试笔记

目录

1. Grounding DINO 参数量(精确范围)

安装依赖项:

torch 和torchvision 版本必须对应上

安装GroundingDINO:

报错解决 NameError: name '_C' is not defined

查看cuda路径:

RuntimeError: Unrecognized tensor type ID: AutocastCUDA解决


1. Grounding DINO 参数量(精确范围)

模型版本Backbone参数量(Million)备注
Grounding DINO-TSwin-Tiny~110M (1.1亿)官方默认轻量版
Grounding DINO-BSwin-Base~170M (1.7亿)更高精度,计算量更大
  • 对比参考

    • GPT-3:1750亿参数(175B)

    • LLaMA-2 7B:70亿参数

    • YOLOv8:约 3M~50M(远小于 Grounding DINO)

    • DETR(ResNet-50):约 40M

结论:Grounding DINO 的参数量在 1.1亿~1.7亿 之间,属于中等规模的视觉-语言模型。

安装依赖项:

GroundingDINO-main

pip install numpy==1.23.2

matplotlib>=3.6.0

torch 和torchvision 版本必须对应上

安装GroundingDINO:

git clone 下载代码到本地

国外网速很慢,

GitHub - IDEA-Research/GroundingDINO: [ECCV 2024] Official implementation of the paper "Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection"

python setup.py install

国内速度较快:

git clone https://gitcode.com/gh_mirrors/gr/GroundingDINO.git

报错解决 NameError: name '_C' is not defined

原因是没有设置CUDA_HOME

    export CUDA_HOME=/usr/local/cuda/
    echo $CUDA_HOME

重新启动命令行好像报错就没有了。

查看cuda路径:

echo $PATH | grep cuda

这将显示包含CUDA的路径。

  • 使用which命令查看nvcc路径: CUDA自带的编译器是nvcc,你可以使用which命令查看它的路径,通常CUDA安装在这个路径的上层目录下。

    which nvcc

    例如,输出可能是 /usr/local/cuda/bin/nvcc,那么CUDA的安装目录就是 /usr/local/cuda/


boxes, logits, phrases = predict(
    model=groundingdino_model, 
    image=input_image, 
    caption='sky', 
    box_threshold=0.3, 
    text_threshold=0.25
)

RuntimeError: Unrecognized tensor type ID: AutocastCUDA解决

RuntimeError: Unrecognized tensor type ID: AutogradCUDA-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值