目录
报错解决 NameError: name '_C' is not defined
RuntimeError: Unrecognized tensor type ID: AutocastCUDA解决
1. Grounding DINO 参数量(精确范围)
模型版本 | Backbone | 参数量(Million) | 备注 |
---|---|---|---|
Grounding DINO-T | Swin-Tiny | ~110M (1.1亿) | 官方默认轻量版 |
Grounding DINO-B | Swin-Base | ~170M (1.7亿) | 更高精度,计算量更大 |
-
对比参考:
-
GPT-3:1750亿参数(175B)
-
LLaMA-2 7B:70亿参数
-
YOLOv8:约 3M~50M(远小于 Grounding DINO)
-
DETR(ResNet-50):约 40M
-
结论:Grounding DINO 的参数量在 1.1亿~1.7亿 之间,属于中等规模的视觉-语言模型。
安装依赖项:
GroundingDINO-main
pip install numpy==1.23.2
matplotlib>=3.6.0
torch 和torchvision 版本必须对应上
安装GroundingDINO:
git clone 下载代码到本地
国外网速很慢,
python setup.py install
国内速度较快:
git clone https://gitcode.com/gh_mirrors/gr/GroundingDINO.git
报错解决 NameError: name '_C' is not defined
原因是没有设置CUDA_HOME
export CUDA_HOME=/usr/local/cuda/
echo $CUDA_HOME
重新启动命令行好像报错就没有了。
查看cuda路径:
echo $PATH | grep cuda
这将显示包含CUDA的路径。
-
使用
which
命令查看nvcc
路径: CUDA自带的编译器是nvcc
,你可以使用which
命令查看它的路径,通常CUDA安装在这个路径的上层目录下。which nvcc
例如,输出可能是
/usr/local/cuda/bin/nvcc
,那么CUDA的安装目录就是/usr/local/cuda/
。
boxes, logits, phrases = predict(
model=groundingdino_model,
image=input_image,
caption='sky',
box_threshold=0.3,
text_threshold=0.25
)
RuntimeError: Unrecognized tensor type ID: AutocastCUDA解决
RuntimeError: Unrecognized tensor type ID: AutogradCUDA-CSDN博客