数字人 LAM 部署笔记

目录

windos踩坑


GitHub - aigc3d/LAM: [SIGGRAPH 2025] LAM: Large Avatar Model for One-shot Animatable Gaussian Head

windos踩坑

nvidia-smi


环境  cuda 11.8

conda install -c "nvidia/label/cuda-11.8.0" cuda-toolkit
conda create --name cuda11.8 -y python=3.10

conda activate cuda11.8


set PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\bin;%PATH%


指定虚拟环境cuda11.8

set CUDA_HOME=E:\miniconda\envs\cuda11.8\Lib\site-packages\torch\lib

使用命令:

set CUDA_HOME=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8
set PATH=%CUDA_HOME%\bin;%PATH%
set LIBRARY_PATH=%CUDA_HOME%\libnvvp;%LIBRARY_PATH%
set LD_LIBRARY_PATH=%CUDA_HOME%\libnvvp;%LD_LIBRARY_PATH%


pytorch 3d   踩坑:

1   不可使用虚拟环境的精简版cuda11.8,要安装完整版cuda11.8

2    需要cmd进入E:\work_now\suanfa_diaoyan\LAM\external\landmark_detection\FaceBoxesV2\utils 目录

    执行命令  python build.py build_ext --inplace


3 报错 File "nms/cpu_nms.pyx", line 25, in nms.cpu_nms.cpu_nms ValueError: Buffer dtype mismatch, expected 'int_t' but got 'long long'

解决办法:用文本编辑器打开fast_rcnn_root/lib/utils/nms.pyx,将第25行的np.int_t修改为np.intp_t。(重点:要重新用fastrcnn的setup build)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值