YOLOv8改进 | Conv篇 | 添加DiverseBranchBlock多元分支模块(有效涨点,重参数化模块高效推理)

本文介绍了如何在YOLOv8中添加Diverse Branch Block(DBB)以增强模型性能。DBB利用多样化分支结构增加训练时的复杂性,但在推理时通过转换保持高效。通过手把手教程,详细讲解了DBB的原理、代码实现和添加方法,并提供了不同配置的yaml文件供训练参考。尽管GFLOPs有所增加,但实验证明DBB能有效提高模型的特征表示能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、本文介绍

本文带来的改进机制是YOLOv8模型与多元分支模块(Diverse Branch Block)的结合,Diverse Branch Block (DBB) 是一种用于增强卷积神经网络性能的结构重新参数化技术。这种技术的核心在于结合多样化的分支,这些分支具有不同的尺度和复杂度,从而丰富特征空间。我将其放在了YOLOv8的不同位置上均有一定的涨点幅度,同时这个DBB模块的参数量并不会上涨太多,我添加三个该机制到模型中,GFLOPs上涨了0.4。

推荐指数:⭐⭐⭐⭐

打星原因:为什么打四颗星是因为我觉得这个机制的计算量会上涨,这是扣分点,其次涨幅效果也比较一般但是有涨点,当然可能是数据集的原因毕竟不同的数据集效果不同

专栏目录:YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备    

目录

一、本文介绍

二、Diverse Branch Block原理

2.1 Diverse Branch Block的基本原理

2.2 多样化分支结构

 2.3 训练与推理分离

2.4 宏观架构不变

三、Diverse Branch Block的核心代码

四、手把手教你添加Diverse Branch Block机制

4.1 Diverse Branch Block的添加教程

4.1.1 修改一

4.1.2 修改二 

4.1.3 修改三 

4.1.4 修改四 

4.2 Diverse Branch Block的yaml文件和训练截图

4.2.1 Diverse Branch Block的yaml版本一(推荐)

4.2.2 Diverse Branch Block的yaml版本二

4.2.3Diverse Branch Block的yaml版本三

4.2.2 Diverse Branch Block的训练过程截图 

### YOLOv5与DBB(Dynamic Block Base)的实现和集成指南 YOLOv5 是一种高效的实时目标检测算法,在计算机视觉领域广泛应用。动态块基(DBB)是一种旨在优化卷积神经网络(CNN)结构的技术,通过自适应调整网络中的模块来提高性能。 #### 1. 动态块基简介 DBB 的核心思想是在训练过程中自动学习最优的网络架构参数配置[^4]。这种方法允许模型根据输入数据的特灵活调整内部组件,从而提升特定任务上的表现力。对于像 YOLO 这样的对象识别框架来说,引入 DBB 可能会带来显著的速度和精度增益。 #### 2. 集成步骤概述 为了将 DBB 整合到 YOLOv5 中,主要涉及以下几个方面的工作: - **修改骨干网**:替换原有固定结构的 CNN 层为支持动态变化的基础单元; - **设计适配器层**:创建额外的连接机制以便于新旧部分之间的平滑过渡; - **更新损失函数**:考虑到新增加的功能特性,可能需要重新定义或扩展原有的评价指标体系; 以下是 Python 实现的一个简化版本示例代码片段用于展示如何在 PyTorch 上面操作上述概念: ```python import torch.nn as nn from yolov5.models.common import C3, Bottleneck class DynamicBlock(nn.Module): def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): super(DynamicBlock, self).__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_, c2, 3, 1, g=g) self.add_module('m', nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])) def integrate_dbb_into_yolov5(model_path='yolov5s.pt'): model = attempt_load(model_path, map_location=torch.device('cpu')) # 假设我们想要替换单个CSP层为例 layer_to_replace = 'model.8' setattr(eval(f'model.{layer_to_replace}'), 'cv2', DynamicBlock(256, 256)) return model ``` 此段代码展示了怎样用 `DynamicBlock` 替代现有的某些层,并将其融入整个 YOLOv5 架构之中。需要注意的是这只是一个非常基础的例子,实际应用时还需要考虑更多细节和技术挑战。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值