【RT-DETR有效改进】为什么YOLO版本的RT-DETR训练模型不收敛精度差的问题

前言

大家好,我是Snu77,这里是RT-DETR有效涨点专栏

本专栏的内容为根据ultralytics版本的RT-DETR进行改进,内容持续更新,每周更新文章数量3-10篇。

其中提到的多个版本ResNet18、ResNet34、ResNet50、ResNet101为本人根据RT-DETR官方版本1:1移植过来的,参数量基本保持一致(误差很小很小),不同于ultralytics仓库版本的ResNet官方版本,同时ultralytics仓库的一些参数是和RT-DETR相冲的所以我也是会教大家调好一些参数,真正意义上的跑ultralytics的和RT-DETR官方版本的无区别,给后期发论文的时候省区许多麻烦。

👑欢迎大家订阅本专栏,一起学习RT-DETR👑 


本文介绍 

本文的内容同样为本专栏的前期预热文章,文章主要解释一下为什么有的人跑ultralytics仓库的RT-DETR精度很差,模型不收敛,mAP异常的情况。

为了验证这一情况我也是跑了多个实验,从多个数据集出发,100-500的数据集我跑了

### 改进YOLO的思路 RT-DETR 是一种基于 Transformer 的目标检测模型,在实时性和精度方面表现出显著优势[^1]。通过对 RT-DETRYOLO 的对比分析,可以发现一些潜在的方法来改进 YOLO 的性能或结构。 #### 1. **引入Anchor-Free机制** YOLO系列通常依赖于预定义的锚框(anchor boxes),而 RT-DETR 使用的是 Anchor-Free 方法,这仅简化了网络设计还提升了推理速度[^2]。可以通过借鉴 RT-DETR 中的无锚点策略,减少对先验框的依赖,从而降低计算复杂度并提升检测效率。 #### 2. **优化注意力机制** RT-DETR 利用了 Transformer 结构中的自注意力机制来自适应地捕捉全局上下文信息。这种特性可以帮助解决传统卷积神经网络难以处理长距离依赖关系的问题。因此可以在 YOLO 架构中加入类似的多头自注意模块或者轻量级变形注意力(deformable attention),增强其特征提取能力。 #### 3. **采用混合编码器架构** 为了进一步加速推断过程并保持高准确性,RT-DETR 设计了一种新颖的混合编码器方案。此方法结合了局部窗口内的交互操作与跨窗口的信息交流,既保留了细粒度的空间细节又能获取更广泛的场景理解。对于 YOLO 来说,则可考虑在其 backbone 或 neck 部分融入这样的混合编码逻辑,平衡资源消耗同表现力之间的权衡。 #### 4. **强化骨干网路(Backbone)** 从 ResNet 出发,RT-DETR 提出了 MSBlock 单元作为替代原有 Bottleneck 层次的选择之一[^3]。这些改动旨在加强深层表示学习的同时控制参数规模增长。相应地,当调整 YOLO 的基础框架时,也可以探索将此类改良后的组件嵌入进去,比如替换部分标准残连接形式为更加高效的变体实现方式。 ```python import torch.nn as nn class ImprovedResidual(nn.Module): def __init__(self, channels): super().__init__() self.conv1 = nn.Conv2d(channels, channels//4, kernel_size=1) self.bn1 = nn.BatchNorm2d(channels//4) self.relu = nn.ReLU(inplace=True) self.depthwise_conv = nn.Conv2d( channels//4, channels//4, groups=channels//4, kernel_size=3, padding='same' ) self.pointwise_conv = nn.Conv2d(channels//4, channels, kernel_size=1) def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.depthwise_conv(out) out = self.pointwise_conv(out) return out + residual ``` 上述代码展示了一个可能用于改善 YOLO Backbone 的新型残单元实例化流程。 ---
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值