YOLOv8改进 | Conv篇 | 利用CVPR2024-DynamicConv提出的GhostModule改进C2f(全网独家首发)

本文详细介绍了如何利用CVPR2024的DynamicConv论文中的GhostModule改进YOLOv8的C2f部分。通过动态卷积,文章展示了在不大幅增加FLOPs的情况下提升模型参数量的方法,增强了网络的适应性和参数效率。作者还手把手指导读者如何在代码中添加GhostModule,并提供了yaml文件和训练过程记录。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、本文介绍

本文给大家带来的改进机制是CVPR2024的最新改进机制DynamicConv其是CVPR2024的最新改进机制,这个论文中介绍了一个名为ParameterNet的新型设计原则,它旨在在大规模视觉预训练模型中增加参数数量,同时尽量不增加浮点运算(FLOPs),所以本文的DynamicConv被提出来了,使得网络在保持低FLOPs的同时增加参数量,在其提出的时候它也提出了一个新的模块hostModule,我勇其魔改C2f从而达到创新的目的,在V8n上其参数量仅有220W计算量为5.8GFLOPs,从而允许这些网络从大规模视觉预训练中获益。

  欢迎大家订阅我的专栏一起学习YOLO! 

专栏目录:YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制 

目录

一、本文介绍

二、原理介绍

三、核心代码 

四、手把手教你添加GhostModule机制

4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四 

五、Gho

关于YOLOv10中引入DynamicConv结构的信息目前尚未广泛公开,这可能是因为YOLO系列算法的更新版本发布信息有限或是该特定改进仍处于研究阶段。然而,在讨论动态卷积(Dynamic Convolution)的应用时,通常指的是在网络层中自适应调整权重的能力,使得模型能够根据不同输入灵活改变其行为[^1]。 对于YOLO架构而言,集成DynamicConv意味着增强目标检测器处理多样化场景的能力。具体来说: - **特征提取优化**:通过学习不同位置上的专用滤波器来提高对复杂背景下的物体识别精度。 - **减少冗余计算**:仅针对感兴趣区域应用更精细的操作,从而节省资源并加速推理过程。 尽管具体的实现细节和官方发布的YOLOv10架构图暂时不可得,但可以根据现有知识推测,DynamicConv可能会被嵌入到骨干网络或颈部设计之中,以改善多尺度感知能力和鲁棒性。 ```python # 这是一个假设性的Python伪代码片段展示如何在一个简化版的目标检测框架里添加dynamic convolution机制 class DynamicConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3): super(DynamicConv, self).__init__() self.weight_generator = nn.Conv2d(in_channels=in_channels, out_channels=out_channels * (kernel_size ** 2), kernel_size=1) def forward(self, x): weights = self.weight_generator(x).view( batch_size, -1, height, width) # 动态生成每张图片上每个空间位置处使用的conv weight output = F.conv2d(input=x, weight=weights, stride=1, padding=(kernel_size//2)) return output ```
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值