一、本文介绍
本文给大家带来的改进机制是CVPR2024的最新改进机制DynamicConv其是CVPR2024的最新改进机制,这个论文中介绍了一个名为ParameterNet的新型设计原则,它旨在在大规模视觉预训练模型中增加参数数量,同时尽量不增加浮点运算(FLOPs),所以本文的DynamicConv被提出来了,使得网络在保持低FLOPs的同时增加参数量,在其提出的时候它也提出了一个新的模块hostModule,我勇其魔改C2f从而达到创新的目的,在V8n上其参数量仅有220W计算量为5.8GFLOPs,从而允许这些网络从大规模视觉预训练中获益。
欢迎大家订阅我的专栏一起学习YOLO!
目录