使用GPT-4训练数据微调GPT-3.5 RAG管道

原文:使用GPT-4训练数据微调GPT-3.5 RAG管道 - 知乎

OpenAI在2023年8月22日宣布,现在可以对GPT-3.5 Turbo进行微调了。也就是说,我们可以自定义自己的模型了。然后LlamaIndex就发布了0.8.7版本,集成了微调OpenAI gpt-3.5 turbo的功能

也就是说,我们现在可以使用GPT-4生成训练数据,然后用更便宜的API(gpt-3.5 turbo)来进行微调,从而获得更准确的模型,并且更便宜。所以在本文中,我们将使用NVIDIA的2022年SEC 10-K文件来仔细研究LlamaIndex中的这个新功能。并且将比较gpt-3.5 turbo和其他模型的性能。

RAG vs 微调

微调到底是什么?它和RAG有什么不同?什么时候应该使用RAG和微调?以下两张总结图:

这两个图像总结了它们基本的差别,为我们选择正确的工具提供了很好的指导。

但是,RAG和微调并不相互排斥。将两者以混合方式应用到同一个应用程序中是完全可行的。

RAG/微调混合方法

LlamaIndex提供了在RAG管道中微调OpenAI gpt-3.5 turbo的详细指南。从较高的层次来看,微调可以实现下图中描述的关键任务:

  1. 使用DatasetGenerator实现评估数据集和训练数据集的数据生成自动化。
  2. 在微调之前,使用第1步生成的Eval数据集对基本模型gpt-3.5-turbo进行Eval。
  3. 构建向量索引查询引擎,调用gpt-4根据训练数据集生成新的训练数据。
  4. 回调处理程序OpenAIFineTuningHandler收集发送到gpt-4的所有消息及其响应,并将这些消息保存为.jsonl (jsonline)格式,OpenAI API端点可以使用该格式进行微调。
  5. OpenAIFinetuneEngine是通过传入gpt-3.5-turbo和第4步生成的json文件来构造的,它向OpenAI发送一个微调调用,向OpenAI发起一个微调作业请求。
  6. OpenAI根据您的要求创建微调的gpt-3.5-turbo模型。
  7. 通过使用从第1步生成的Eval数据集来对模型进行微调。

简单的总结来说就是,这种集成使gpt-3.5 turbo能够对gpt-4训练的数据进行微调,并输出更好的响应。

步骤2和7是可选的,因为它们仅仅是评估基本模型与微调模型的性能。

我们下面将演示这个过程,在演示时,使用NVIDIA 2022年的SEC 10-K文件。

主要功能点

1、OpenAIFineTuningHandler

这是OpenAI微调的回调处理程序,用于收集发送到gpt-4的所有训练数据,以及它们的响应。将这些消息保存为.jsonl (jsonline)格式,OpenAI的API端点可以使用该格式进行微调。

2、OpenAIFinetuneEngine

微调集成的核心是OpenAIFinetuneEngine,它负责启动微调作业并获得一个微调模型,可以直接将其插件到LlamaIndex工作流程的其余部分。

使用OpenAIFinetuneEngine, LlamaIndex抽象了OpenAI api进行微调的所有实现细节。包括:

  • 准备微调数据并将其转换为json格式。
  • 使用OpenAI的文件上传微调数据。创建端点并从响应中获取文件id。
  • 通过调用OpenAI的FineTuningJob创建一个新的微调作业。创建端点。
  • 等待创建新的微调模型,然后使用新的微调模型。
    我们可以使用OpenAIFinetuneEngine的gpt-4和OpenAIFineTuningHandler来收集我们想要训练的数据,也就是说我们使用gpt-4的输出来训练我们的自定义的gpt-3.5 turbo模型

from llama_index import ServiceContext 
from llama_index.llms import OpenAI 
from llama_index.callbacks import OpenAIFineTuningHandler 
from llama_index.callbacks import CallbackManager 

# use GPT-4 and the OpenAIFineTuningHandler to collect data that we want to train on. 
finetuning_handler = OpenAIFineTuningHandler() 
callback_manager = CallbackManager([finetuning_handler]) 

gpt_4_context = ServiceContext.from_defaults( 
    llm=OpenAI(model="gpt-4", temperature=0.3), 
    context_window=2048,  # limit the context window artifically to test refine process 
    callback_manager=callback_manager, 
) 

# load the training questions, auto generated by DatasetGenerator 
questions = [] 
with open("train_questions.txt", "r") as f: 
    for line in f: 
        questions.append(line.strip()) 

from llama_index import VectorStoreIndex 

# create index, query engine, and run query for all questions 
index = VectorStoreIndex.from_documents(documents, service_context=gpt_4_context) 
query_engine = index.as_query_engine(similarity_top_k=2) 

for question in questions: 
    response = query_engine.query(question) 

# save fine-tuning events to jsonl file 
finetuning_handler.save_finetuning_events("finetuning_events.jsonl") 

from llama_index.finetuning import OpenAIFinetuneEngine 

# construct OpenAIFinetuneEngine  
finetune_engine = OpenAIFinetuneEngine( 
    "gpt-3.5-turbo", 
    "finetuning_events.jsonl" 
) 

# call finetune, which calls OpenAI API to fine-tune gpt-3.5-turbo based on training data in jsonl file. 
finetune_engine.finetune() 

# check current job status 
finetune_engine.get_current_job() 

# get fine-tuned model 
ft_llm = finetune_engine.get_finetuned_model(temperature=0.3)

需要注意的是,微调函数需要时间,对于我测试的169页PDF文档,从在finetune_engine上启动finetune到收到OpenAI的电子邮件通知我新的微调工作已经完成,这段时间大约花了10分钟。下面的电子邮件如下。


在收到该电子邮件之前,如果在finetune_engine上运行get_finetuned_model,会得到一个错误,提示微调作业还没有准备好。
3、ragas框架
ragas是RAG Assessment的缩写,它提供了基于最新研究的工具,使我们能够深入了解RAG管道。
ragas根据不同的维度来衡量管道的表现:忠实度、答案相关性、上下文相关性、上下文召回等。对于这个演示应用程序,我们将专注于衡量忠实度和答案相关性。
忠实度:衡量给定上下文下生成的答案的信息一致性。如果答案中有任何不能从上下文推断出来的主张,则会被扣分。
答案相关性:指回答直接针对给定问题或上下文的程度。这并不考虑答案的真实性,而是惩罚给出问题的冗余信息或不完整答案。
在RAG管道中应用ragas的详细步骤如下:

  • 收集一组eval问题(最少20个,在我们的例子中是40个)来形成我们的测试数据集。
  • 在微调之前和之后使用测试数据集运行管道。每次使用上下文和生成的输出记录提示。
  • 对它们中的每一个运行ragas评估以生成评估分数。
比较分数就可以知道微调对性能的影响有多大。
代码如下:
contexts = [] 
answers = [] 

# loop through the questions, run query for each question 
for question in questions: 
    response = query_engine.query(question) 
    contexts.append([x.node.get_content() for x in response.source_nodes]) 
    answers.append(str(response)) 

from datasets import Dataset 
from ragas import evaluate 
from ragas.metrics import answer_relevancy, faithfulness 

ds = Dataset.from_dict( 
    { 
        "question": questions, 
        "answer": answers, 
        "contexts": contexts, 
    } 
) 

# call ragas evaluate by passing in dataset, and eval categories 
result = evaluate(ds, [answer_relevancy, faithfulness]) 
print(result) 

import pandas as pd 

# print result in pandas dataframe so we can examine the question, answer, context, and ragas metrics 
pd.set_option('display.max_colwidth', 200) 
result.to_pandas()

评估结果 最后我们可以比较一下微调前后的eval结果。 基本gpt-3.5-turbo的评估请看下面的截图。answer_relevance的评分不错,但忠实度有点低。


经过微调,模型的性能在答案相关性中略有提高,从0.7475提高到0.7846,提高了4.96%。


使用gpt-4生成训练数据对gpt-3.5 turbo进行微调确实看到了改善。
一些有趣的发现
1、对小文档进行微调会导致性能下降
最初用一个小的10页PDF文件进行了实验,我发现eval结果与基本模型相比性能有所下降。然后又继续测试了两轮,结果如下:
第一轮基本模型:Ragas_score: 0.9122, answer_relevance: 0.9601, faithfulness: 0.8688
第一轮微调模型:Ragas_score: 0.8611, answer_relevance: 0.9380, faithfulness: 0.7958
第二轮基本模型:Ragas_score: 0.9170, answer_relevance: 0.9614, faithfulness: 0.8765
第二轮微调模型:Ragas_score: 0.8891, answer_relevance: 0.9557, faithfulness: 0.8313
所以换衣小文件可能是微调模型比基本模型表现更差的原因。所以使用了NVIDIA长达169页的SEC 10-K文件。对上面的结果做了一个很好的实验——经过微调的模型表现得更好,忠实度增加了4.96%。
2、微调模型的结果不一致
原因可能是数据的大小和评估问题的质量
尽管169页文档的微调模型获得了预期的评估结果,但我对相同的评估问题和相同的文档运行了第二轮测试,结果如下:
第二轮基本模型:Ragas_score: 0.8874, answer_relevance: 0.9623, faithfulness: 0.8233
第二轮微调模型:Ragas_score: 0.8218, answer_relevance: 0.9498, faithfulness: 0.7242
是什么导致了eval结果的不一致?
数据大小很可能是导致不一致的微调计算结果的根本原因之一。“至少需要1000个微调数据集的样本。”这个演示应用显然没有那么多的微调数据集。
另一个根本原因很可能在于数据质量,也就是eval问题的质量。我将eval结果打印到一个df中,列出了每个问题的问题、答案、上下文、answer_relevance和忠实度。
通过目测,有四个问题在忠实度中得分为0。而这些答案在文件中没有提供上下文。这四个问题质量很差,所以我从eval_questions.txt中删除了它们,重新运行了评估,得到了更好的结果:
基本模型eval:Ragas_score: 0.8947, answer_relevance: 0.9627, faithfulness: 0.8356


微调模型eval:Ragas_score: 0.9207, answer_relevance: 0.9596, faithfulness: 0.8847


可以看到在解决了这四个质量差的问题后,微调版的上升了5.9%。所以评估问题和训练数据需要更多的调整,以确保良好的数据质量。这确实是一个非常有趣的探索领域。
3、微调的成本
经过微调的gpt-3.5-turbo的价格高于基本模型的。我们来看看基本模型、微调模型和gpt-4之间的成本差异:


比较gpt-3.5-turbo (4K环境)、微调gpt-3.5-turbo和gpt-4 (8K环境),可以看到:

  • 经过微调的gpt-3.5 turbo在输入和输出使用方面的成本是基本模型的8倍。
  • 对于输入使用,Gpt-4的成本是微调模型的2.5倍,对于输出使用则是3.75倍。
  • 对于输入使用,Gpt-4的成本是基本模型的20倍,对于输出使用情况是30倍。
  • 另外使用微调模型会产生$0.008/1K 令牌的额外成本。

总结

本文探索了LlamaIndex对OpenAI gpt-3.5 turbo微调的新集成。我们通过NVIDIA SEC 10-K归档分析的RAG管道,测试基本模型性能,然后使用gpt-4收集训练数据,创建OpenAIFinetuneEngine,创建了一个新的微调模型,测试了它的性能,并将其与基本模型进行了比较。

可以看到,因为GPT4和gpt-3.5 turbo的巨大成本差异(20倍),在使用微调后,我们可以得到近似的效果,并且还能节省不少成本(2.5倍)

如果你对这个方法感兴趣,源代码在这里:

https://colab.research.google.com/github/wenqiglantz/nvidia-sec-finetuning/blob/main/nvidia_sec_finetuning.ipynb

作者:Wenqi Glantz

发布于 2023-09-06 10:09・IP 属地北京

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值