Apollo决策规划planning模块简要分析

本文简要分析了Apollo自动驾驶系统的决策规划模块。主要介绍了Planning模块的初始化过程、业务逻辑,包括每隔100ms执行一次的定时任务,如获取定位数据、计算轨迹、进行决策等。在决策过程中,Planning模块调用多个子模块,如Planner和Task,如Decider(包括TrafficDecider、PathDecider和SpeedDecider)和Optimizer(如DpPolyPathOptimizer等)。这些子模块协同工作,实现路径规划和速度优化等功能。
摘要由CSDN通过智能技术生成

决策规划planning模块简要分析

入口

初始化

Planning模块的初始化见Planning::Init()(apollo/modules/planning/planning.cc)。

业务逻辑

Planning模块的业务逻辑见Planning::RunOnce()(apollo/modules/planning/planning.cc),该函数每隔一段时间执行一次(100ms?),由定时器Planning::OnTimer定时调用。

定时任务Planning::RunOnce()大体步骤如下:

  • 获取定位数据与底盘数据
    • AdapterManager::GetLocalization()->GetLatestObserved()
    • AdapterManager::GetChassis()->GetLatestObserved()
  • 计算拼接轨迹TrajectoryStitcher::ComputeStitchingTrajectory
  • 根据拼接轨迹进行决策Planning::Plan()

决策Planning::Plan()大体步骤:

  • 调用planner子模块Planner::Plan()进行实际决策
  • 输出决策结果ReferenceLineInfo::ExportDecision()

### 回答1: Apollo Planning决策规划算法在无人驾驶领域中被广泛应用,在自动驾驶车辆中起着至关重要的作用。该算法主要通过对车辆周围环境的感知和分析,实现智能驾驶路线的规划决策,确保车辆安全行驶。 该算法的代码主要包含三个部分:感知模块规划模块和控制模块。其中感知模块主要负责采集车辆周围的环境信息,包括车辆所处的位置、路况、障碍物等。规划模块通过对这些信息的分析,提出一系列可能的驾驶路线,并通过评估这些路线的优劣来选择最佳驾驶路线。控制模块负责实现规划模块中选择的最佳驾驶路线,并控制车辆按照路线行驶。 在Apollo Planning决策规划算法中,规划模块是实现驾驶决策的最重要模块,也是最具技术难度的模块规划模块通过对车辆当前状态和环境信息的分析,提出一系列汽车驾驶路线。该算法采用在线生成路线方案的方法,路线生成的步骤如下: 1. 动态路径规划:根据车辆的位置和行驶状态,实时选择当前最佳的驾驶路线。 2. 静态路线生成:基于当前车辆所处的环境信息,生成固定的驾驶路线。 3. 组合路径规划:将动态路径规划和静态路线生成相结合,生成最终的驾驶路线。 除此之外,Apollo Planning决策规划算法还包括计算机视觉、机器学习、深度学习和人工智能等技术,这些技术的综合应用使得Apollo Planning决策规划算法成为无人驾驶领域中应用最广泛的决策规划算法。 ### 回答2: Apollo Planning决策规划算法是一种用于自动驾驶系统的规划算法。该算法的主要作用是实时生成安全、有效且符合路况的路径以实现自动驾驶功能。本文将对该算法进行详细解析。 Apollo Planning决策规划算法主要包括三个步骤:路线规划、运动规划决策规划。具体代码如下: 1. 路线规划 ```c++ bool Planning::PlanOnReferenceLine() { std::vector<const hdmap::HDMap*> hdmap_vec; hdmap_vec.reserve(1); if (!GetHdmapOnRouting(current_routing_, &hdmap_vec)) { AERROR << "Failed to get hdmap on current routing with " << current_routing_.ShortDebugString(); return false; } const auto& reference_line_info = reference_line_infos_.front(); std::vector<ReferencePoint> ref_points; if (!CreateReferenceLineInfo(hdmap_vec.front(), reference_line_info, &ref_points)) { AERROR << "Failed to create reference line from routing"; return false; } // Smooth reference line Spline2d smoothed_ref_line; std::vector<double> s_refs; std::vector<double> l_refs; std::vector<double> headings; std::vector<double> kappas; std::vector<double> dkappas; if (!SmoothReferenceLine(ref_points, &smoothed_ref_line, &s_refs, &l_refs, &headings, &kappas, &dkappas)) { AERROR << "Failed to smooth reference line"; return false; } reference_line_info.SetTrajectory(&smoothed_ref_line); reference_line_info.SetReferenceLine(&ref_points); // set origin point if (!reference_line_info.SLToXY(s_refs.front(), 0.0, &origin_point_)) { AERROR << "Failed to get origin point on reference line"; return false; } return true; } ``` 在路线规划阶段中,Apollo Planning决策规划算法首先获取当前行驶路线和高精度地图数据。然后根据行驶路线和地图数据构建参考线,对参考线进行平滑处理,得到平滑后的参考线。此时我们可以得到平滑后的参考线的位置、方向和曲率等信息,这些信息将作为后面的运动和决策规划的输入。 2. 运动规划 ```c++ bool Planning::PlanOnPrediction() { PredictionObstacles prediction_obstacles; if (!GetPrediction(&prediction_obstacles)) { AERROR << "Prediction failed"; return false; } std::vector<Obstacle> obstacles; if (!BuildObstacle(prediction_obstacles, &obstacles)) { AERROR << "Unable to build obstacle"; return false; } const auto& reference_line_info = reference_line_infos_.front(); const auto& reference_line = reference_line_info.reference_line(); SpeedData speed_data; Cruiser::PlanningTarget planning_target; Status status = cruiser_->Plan(reference_line_info, obstacles, 0.0, reference_line.Length(), &speed_data, &planning_target); if (status != Status::OK()) { AERROR << "Failed to plan path with status: " << status; return false; } RecordDebugInfo(reference_line_info, obstacles, speed_data); return true; } ``` 运动规划主要用于生成车辆在参考线上的运行轨迹。在运动规划阶段,Apollo Planning决策规划算法首先获取预测障碍物信息,将预测的障碍物转化为Obstacle对象。然后根据当前平滑后的参考线、障碍物等信息进行运动规划。运动规划的目标是生成符合规划目标的速度曲线。最后,Apollo Planning决策规划算法记录调试信息,以便后续分析调试。 3. 决策规划 ```c++ bool Planning::MakeDecision() { const auto& reference_line_info = reference_line_infos_.front(); const auto& reference_line = reference_line_info.reference_line(); std::vector<const Obstacle*> obstacles; if (!Obstacle::CreateObstacleRegions(FLAGS_max_distance_obstacle, reference_line_info, &obstacles)) { AERROR << "Failed to create obstacle regions"; return false; } for (auto obstacle_ptr : obstacles) { const auto& obstacle = *obstacle_ptr; if (obstacle.IsVirtual()) { continue; } if (obstacle.IsStatic()) { continue; } if (obstacle.type() == PerceptionObstacle::BICYCLE || obstacle.type() == PerceptionObstacle::PEDESTRIAN) { continue; } const auto& nearest_path_point = obstacle.nearest_point(); const SLPoint obstacle_sl = reference_line_info.xy_to_sl(nearest_path_point); if (obstacle_sl.s() < -FLAGS_max_distance_obstacle || obstacle_sl.s() > reference_line.Length() + FLAGS_max_distance_obstacle) { continue; } ObjectDecisionType decision; decision.mutable_avoid(); decision.mutable_avoid()->set_distance_s(-obstacle_sl.s()); reference_line_info.AddCost(&obstacle, &decision); } std::vector<ObjectDecisionType> decisions; if (!traffic_rule_manager_.ApplyRule(reference_line_info, &decisions)) { AERROR << "Failed to apply traffic rule manager"; return false; } reference_line_info.SetDecision(decisions); return true; } ``` 决策规划是基于当前环境信息和规划的路径等输入信息,实时生成控制命令的过程。在Apollo Planning决策规划算法中,决策规划阶段根据当前参考线、障碍物等信息生成决策。该算法根据不同的规则和策略,生成不同的控制命令,以保证车辆安全、有效地运行。 综上,Apollo Planning决策规划算法是自动驾驶系统中重要的规划算法之一,它通过路线规划、运动规划决策规划三个步骤,实现了安全、有效和符合路况的路径规划,为自动驾驶车辆的控制提供了重要的支持。 ### 回答3: Apollo Planning(阿波罗规划)是百度自动驾驶平台Apollo中的一种决策规划算法,主要用于规划车辆的驾驶行为。该算法基于深度强化学习,使用了运动学模型和环境感知技术,可以根据车辆当前位置和目的地,生成一条最优的行驶路径,包括车辆的控制指令和行驶速度等。 该算法的核心技术是深度强化学习,它通过对驾驶过程进行大量的仿真,让计算机通过自我学习得到驾驶规则,使车辆能够根据不同的场景做出最优的决策。具体而言,算法先通过神经网络生成一系列潜在的行动策略,然后通过与环境进行交互、执行行动并接收环境反馈来评估每个策略的优劣,最终选取最优策略进行执行。 在实现上,Apollo Planning算法主要由四个模块构成:感知模块规划模块、执行模块和控制模块。感知模块主要用于获取车辆周围环境的信息,包括车辆位置、速度、道路情况、交通灯等;规划模块根据感知模块提供的信息和车辆的目的地,生成一条最优的行驶路径;执行模块则根据规划模块生成的路径信息,实现车辆的自主驾驶;控制模块则根据执行模块生成的控制指令,控制车辆的加速、刹车、转向等行为。 在算法实现上,Apollo Planning采用了C++编程语言,结合ROS框架实现各模块之间的数据交互和代码复用,保证了算法的高效性和可维护性。算法代码实现方面还采用了许多优化技术,包括多线程并发执行、高效的数据结构和算法等,以提升算法的运行效率和稳定性。 总之,Apollo Planning是一种基于深度强化学习的决策规划算法,具有高效、自主、可靠等特点,在智能驾驶领域具有广泛应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值