LIO-SAM源码解读(一):ImageProjection

写在前面

ImageProjection 激光运动畸变校正
功能简介:
1、利用当前激光帧起止时刻间的imu数据计算旋转增量,IMU里程计数据(来自ImuPreintegration)计算平移增量,进而对该激光帧每一时刻的激光点进行运动畸变矫正
(利用相对激光帧起始时刻的位姿增量,变换当前激光点到起始时刻激光点的坐标系下,实现矫正);
2、同时利用IMU数据的姿态角(RPY,roll,pitch,yaw)、IMU里程计数据的位姿,对当前帧激光位姿进行粗略初始化。

订阅:
1、订阅原始的IMU数据;
2、订阅IMU里程计数据,来自IMUPreintegration,表示每一时刻的位姿;
3、订阅原始激光点云数据。

发布:
1、发布当前帧激光运动畸变矫正之后的有效点云,用于rviz展示;
2、发布当前帧激光运动矫正之后的点云信息,包括点云数据、初始位姿、位姿角、有效点云数据等,发布给FeatureExtraction进行特征提取。

点云结构:

/**
 * Velodyne点云结构,变量名XYZIRT是每个变量的首字母
 */
struct VelodynePointXYZIRT
{
    PCL_ADD_POINT4D     //位置
    PCL_ADD_INTENSITY;   //激光点反射强度,也可以存点的索引
    uint16_t ring;       //扫描线
    float time;           //时间戳,记录相对于当前帧第一个激光点的时差,第一个点time=0 
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW
} EIGEN_ALIGN16;          //内存16字节对齐,EIGEN SSE优化要求
//注册为PCL点云格式
POINT_CLOUD_REGISTER_POINT_STRUCT (VelodynePointXYZIRT,
    (float, x, x) (float, y, y) (float, z, z) (float, intensity, intensity)
    (uint16_t, ring, ring) (float, time, time)
)

/**
 * Ouster点云结构
*/
struct OusterPointXYZIRT {
    PCL_ADD_POINT4D;
    float intensity;
    uint32_t t;
    uint16_t reflectivity;
    uint8_t ring;
    uint16_t noise;
    uint32_t range;
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW
} EIGEN_ALIGN16;
POINT_CLOUD_REGISTER_POINT_STRUCT(OusterPointXYZIRT,
    (float, x, x) (float, y, y) (float, z, z) (float, intensity, intensity)
    (uint32_t, t, t) (uint16_t, reflectivity, reflectivity)
    (uint8_t, ring, ring) (uint16_t, noise, noise) (uint32_t, range, range)
)

//本程序使用Velodyne点云结构
using PointXYZIRT = VelodynePointXYZIRT;
//imu数据队列长度
const int queueLength = 2000;

成员变量:

private:

    //imu队列,odom队列互斥锁
    std::mutex imuLock;
    std::mutex odoLock;

    // 订阅原始激光点云
    ros::Subscriber subLaserCloud;
    ros::Publisher  pubLaserCloud;
    
    //发布当前帧矫正后点云,有效点
    ros::Publisher pubExtractedCloud;
    ros::Publisher pubLaserCloudInfo;

    //imu数据队列(原始数据,转lidar系下)
    ros::Subscriber subImu;
    std::deque<sensor_msgs::Imu> imuQueue;

    //imu里程计队列
    ros::Subscriber subOdom;
    std::deque<nav_msgs::Odometry> odomQueue;

    //激光点云数据队列
    std::deque<sensor_msgs::PointCloud2> cloudQueue;
    //队列front帧,作为当前处理帧点云
    sensor_msgs::PointCloud2 currentCloudMsg;

    //当前激光帧起止时间对应的imu数据,计算相对于起始时刻的旋转增量,以及时间戳;用于插值计算当前激光帧起止时间范围内,每一时刻的旋转姿态
    double *imuTime = new double[queueLength];
    double *imuRotX = new double[queueLength];
    double *imuRotY = new double[queueLength];
    double *imuRotZ = new double[queueLength];

    int imuPointerCur;
    bool firstPointFlag;
    Eigen::Affine3f transStartInverse;

    //当前帧原始激光点云
    pcl::PointCloud<PointXYZIRT>::Ptr laserCloudIn;
    pcl::PointCloud<OusterPointXYZIRT>::Ptr tmpOusterCloudIn;
    //当前帧运动畸变矫正之后的激光点云
    pcl::PointCloud<PointType>::Ptr   fullCloud;
    //从fullCloud中提取有效点
    pcl::PointCloud<PointType>::Ptr   extractedCloud;

    int deskewFlag;
    cv::Mat rangeMat;

    bool odomDeskewFlag;
    //当前激光帧起止时刻对应imu里程计位姿变换,改变换对应的平移增量;用于插值计算当前激光帧起止时间范围内,每一时刻的位置
    float odomIncreX;
    float odomIncreY;
    float odomIncreZ;

    //当前帧激光点云运动畸变矫正之后的数据,包括点云数据,初始位姿,姿态角等,发布给featureExtraction进行特征提取
    lio_sam::cloud_info cloudInfo;
    //当前帧起始时刻
    double timeScanCur;
    //当前帧结束时刻
    double timeScanEnd;
    //当前帧header,包含时间戳信息
    std_msgs::Header cloudHeader;

构造函数:

public:
    ImageProjection():
    deskewFlag(0)
    {
        //订阅原始的IMU数据
        subImu        = nh.subscribe<sensor_msgs::Imu>(imuTopic, 2000, &ImageProjection::imuHandler, this, ros::TransportHints().tcpNoDelay());
        //订阅IMU里程计,由imuPreintergration积分计算得到的每时刻imu位姿
        subOdom       = nh.subscribe<nav_msgs::Odometry>(odomTopic+"_incremental", 2000, &ImageProjection::odometryHandler, this, ros::TransportHints().tcpNoDelay());
        //订阅原始lidar数据
        subLaserCloud = nh.subscribe<sensor_msgs::PointCloud2>(pointCloudTopic, 5, &ImageProjection::cloudHandler, this, ros::TransportHints().tcpNoDelay());

        //发布当前激光帧运动畸变矫正后的点云,有效点
        pubExtractedCloud = nh.advertise<sensor_msgs::PointCloud2> ("lio_sam/deskew/cloud_deskewed", 1);
        //发布当前激光帧运动畸变矫正后的点云信息
        pubLaserCloudInfo = nh.advertise<lio_sam::cloud_info> ("lio_sam/deskew/cloud_info", 1);

        //初始化
        allocateMemory();
        //重置参数
        resetParameters();

        //pcl日志级别,打开ERROR日志
        pcl::console::setVerbosityLevel(pcl::console::L_ERROR);
    }

初始化与参数重置:

    //初始化与重置
    /**
     * 初始化
     */
    void allocateMemory()
    {
        laserCloudIn.reset(new pcl::PointCloud<PointXYZIRT>());
        tmpOusterCloudIn.reset(new pcl::PointCloud<OusterPointXYZIRT>());
        fullCloud.reset(new pcl::PointCloud<PointType>());
        extractedCloud.reset(new pcl::PointCloud<PointType>());

        fullCloud->points.resize(N_SCAN*Horizon_SCAN);

        cloudInfo.startRingIndex.assign(N_SCAN, 0);
        cloudInfo.endRingIndex.assign(N_SCAN, 0);

        cloudInfo.pointColInd.assign(N_SCAN*Horizon_SCAN, 0);
        cloudInfo.pointRange.assign(N_SCAN*Horizon_SCAN, 0);

        resetParameters();
    }

    /**
     * 重置参数,接收每帧lidar数据都要重置这些参数
     */
    void resetParameters()
    {
        //清零操作
        laserCloudIn->clear();
        extractedCloud->clear();
        // reset range matrix for range image projection
        // 初始全部用FLT_MAX填充
        // 因此后文函数projectPointCloud中有一句if(rangeMat.at<float>(rowIdn, columnIdn)!=FLT_MAX)continue;
        rangeMat = cv::Mat(N_SCAN, Horizon_SCAN, CV_32F, cv::Scalar::all(FLT_MAX));

        imuPointerCur = 0;
        firstPointFlag = true;
        odomDeskewFlag = false;

        for (int i = 0; i < queueLength; ++i)
        {
            imuTime[i] = 0;
            imuRotX[i] = 0;
            imuRotY[i] = 0;
            imuRotZ[i] = 0;
        }
    }

订阅imu原始数据:

    /**
     * 订阅原始imu数据
     * imu原始测量数据转换到lidar系,加速度,角速度,RPY(欧拉角)
     */
    void imuHandler(const sensor_msgs::Imu::ConstPtr& imuMsg)
    {
        //imuConverter在文件utility.h中,作用是把imu数据转换到lidar坐标系
        sensor_msgs::Imu thisImu = imuConverter(*imuMsg);
        //上锁,添加数据的时候队列不可用
        std::lock_guard<std::mutex> lock1(imuLock);
        imuQueue.push_back(thisImu);

        // debug IMU data
        // cout << std::setprecision(6);
        // cout << "IMU acc: " << endl;
        // cout << "x: " << thisImu.linear_acceleration.x << 
        //       ", y: " << thisImu.linear_acceleration.y << 
        //       ", z: " << thisImu.linear_acceleration.z << endl;
        // cout << "IMU gyro: " << endl;
        // cout << "x: " << thisImu.angular_velocity.x << 
        //       ", y: " << thisImu.angular_velocity.y << 
        //       ", z: " << thisImu.angular_velocity.z << endl;
        // double imuRoll, imuPitch, imuYaw;
        // tf::Quaternion orientation;
        // tf::quaternionMsgToTF(thisImu.orientation, orientation);
        // tf::Matrix3x3(orientation).getRPY(imuRoll, imuPitch, imuYaw);
        // cout << "IMU roll pitch yaw: " << endl;
        // cout << "roll: " << imuRoll << ", pitch: " << imuPitch << ", yaw: " << imuYaw << endl << endl;
    }

订阅IMU里程计,由imuPreintergration积分计算得到的每时刻imu位姿:

    /**
     * 订阅imu里程计,由imuPreintegration积分计算得到的每一时刻imu位姿(地图优化程序中发布的)
     */
    void odometryHandler(const nav_msgs::Odometry::ConstPtr& odometryMsg)
    {
        std::lock_guard<std::mutex> lock2(odoLock);
        odomQueue.push_back(*odometryMsg);
    }

订阅原始lidar数据:

    //订阅原始激光点云
    /**
     * 订阅原始lidar数据
     * 1.添加一帧激光点云到队列,取出最早一帧为当前帧,计算起止时间戳,检查数据有效性
     * 2.当前帧起止时刻对应的imu数据,imu里程计数据处理
     *  imu数据:
     *  1)遍历当前激光帧起止时刻之间的imu数据,初始时刻对应imu的姿态角RPY 设为当前帧的初始姿态角
     *  2)用角速度,时间积分,计算每一时刻相对于初始时刻的旋转量,初始时刻旋转设为0
     *  imu里程计数据:
     *  1)遍历当前激光帧起止时刻之间的imu里程计数据,初始时刻对应imu里程计设为当前帧的初始位姿
     *  2)用起始,终止时刻对应imu里程计,计算相对位姿变换,保持平移增量
     * 3.当前激光点云运动畸变矫正
     *  1)检查激光点距离,扫描线是否合规
     *  2)激光运动畸变矫正,保存激光点
     * 4.提取有效激光点,存extractedCloud
     * 5.发布当前帧矫正后点云,有效点
     * 6.重置参数,接受每帧lidar数据都要重置这些参数
     */
    void cloudHandler(const sensor_msgs::PointCloud2ConstPtr& laserCloudMsg)
    {
        //添加一帧激光点云到队列,取最早一帧作为当前帧,计算起止时间戳,检查数据有效性
        if (!cachePointCloud(laserCloudMsg))
            return;

        //当前帧起止时刻对应的imu数据,imu里程计数据处理
        if (!deskewInfo())
            return;

        //当前帧激光点云运动畸变矫正
        //1.检查激光点距离、扫描线是否合规
        //2.激光运动畸变矫正,保存激光点
        projectPointCloud();

        //提取有效激光点,存extractedCloud
        cloudExtraction();

        //发布当前帧矫正后的点云,有效点
        publishClouds();

        //重置参数,接收每帧lidar数据都要重置这些参数
        resetParameters();
    }

从激光点云队列中取出最早一帧作为当前帧:

    // 从激光点云队列中取出最早一帧作为当前帧
    /**
     * 添加一帧激光点云到队列,取最早一帧作为当前帧,计算起止时间戳,检查数据的有效性
     */
    bool cachePointCloud(const sensor_msgs::PointCloud2ConstPtr& laserCloudMsg)
    {
        // cache point cloud 缓存点云
        cloudQueue.push_back(*laserCloudMsg);
        if (cloudQueue.size() <= 2)
            return false;

        // convert cloud
        currentCloudMsg = std::move(cloudQueue.front());
        cloudQueue.pop_front();
        if (sensor == SensorType::VELODYNE)
        {
            //转换成pcl点云格式
            pcl::moveFromROSMsg(currentCloudMsg, *laserCloudIn);
        }
        else if (sensor == SensorType::OUSTER)
        {
            // Convert to Velodyne format  转换成Velodyne格式
            pcl::moveFromROSMsg(currentCloudMsg, *tmpOusterCloudIn);
            laserCloudIn->points.resize(tmpOusterCloudIn->size());
            laserCloudIn->is_dense = tmpOusterCloudIn->is_dense;
            for (size_t i = 0; i < tmpOusterCloudIn->size(); i++)
            {
                auto &src = tmpOusterCloudIn->points[i];
                auto &dst = laserCloudIn->points[i];
                dst.x = src.x;
                dst.y = src.y;
                dst.z = src.z;
                dst.intensity = src.intensity;
                dst.ring = src.ring;
                dst.time = src.t * 1e-9f;
            }
        }
        else
        {
            ROS_ERROR_STREAM("Unknown sensor type: " << int(sensor));
            ros::shutdown();
        }

        // get timestamp
        // 当前帧头部
        cloudHeader = currentCloudMsg.header;
        //当前帧起始时刻
        timeScanCur = cloudHeader.stamp.toSec();
        //当前帧结束时刻,注:点云中激光点的time记录相对于当前帧第一个激光点的时差,第一个点time=0
        timeScanEnd = timeScanCur + laserCloudIn->points.back().time;

        // check dense flag 存在无效点,Nan或Inf
        if (laserCloudIn->is_dense == false)
        {
            ROS_ERROR("Point cloud is not in dense format, please remove NaN points first!");
            ros::shutdown();
        }

        // check ring channel 检查是否存在ring通道,注意static只检查一次
        static int ringFlag = 0;
        if (ringFlag == 0)
        {
            ringFlag = -1;
            for (int i = 0; i < (int)currentCloudMsg.fields.size(); ++i)
            {
                if (currentCloudMsg.fields[i].name == "ring")
                {
                    ringFlag = 1;
                    break;
                }
            }
            if (ringFlag == -1)
            {
                ROS_ERROR("Point cloud ring channel not available, please configure your point cloud data!");
                ros::shutdown();
            }
        }

        // check point time 检查是否存在time通道
        if (deskewFlag == 0)
        {
            deskewFlag = -1;
            for (auto &field : currentCloudMsg.fields)
            {
                if (field.name == "time" || field.name == "t")
                {
                    deskewFlag = 1;
                    break;
                }
            }
            if (deskewFlag == -1)
                ROS_WARN("Point cloud timestamp not available, deskew function disabled, system will drift significantly!");
        }

        return true;
    }

处理当前激光帧起止时刻对应的IMU数据、IMU里程计数据:

    //处理当前激光帧起止时刻对应的IMU数据、IMU里程计数据
    /**
     * 当前帧起止时刻对应的imu数据,imu里程计数据处理
     */
    bool deskewInfo()
    {
        std::lock_guard<std::mutex> lock1(imuLock);
        std::lock_guard<std::mutex> lock2(odoLock);

        // make sure IMU data available for the scan
        // 要求imu数据包含激光数据,否则不往下处理
        if (imuQueue.empty() || imuQueue.front().header.stamp.toSec() > timeScanCur || imuQueue.back().header.stamp.toSec() < timeScanEnd)
        {
            ROS_DEBUG("Waiting for IMU data ...");
            return false;
        }

        //当前帧对应imu数据处理
        //1.遍历当前激光帧起止时刻之间的imu数据,初始时刻对应的imu姿态角RPY设为当前帧的初始姿态角
        //2.用角速度、时间积分,计算每一时刻相对于初始时刻的旋转量,初始时刻旋转设为0
        //注:imu数据都已经转换到lidar坐标系下了
        imuDeskewInfo();

        //当前帧对应imu里程计处理
        //1.遍历当前激光帧起止时刻之间的imu数据,初始时刻对应的imu里程计设为当前帧的初始位姿
        //2.用起始,终止时刻对应imu里程计,计算相对位姿变换,保存平移增量
        //注:imu数据都已经转换到lidar系下了
        odomDeskewInfo();

        return true;
    }
    
    /**
     * 对当前帧对应imu数据处理
     * 1.遍历当前激光帧起止时间之间的imu数据,初始时刻对应imu的姿态角RPY设为当前帧的初始姿态角
     * 1.用角速度,时间积分,计算每一时刻相对于初始时刻的旋转量,初始时刻旋转设为0
     * 注:imu数据已都转换到lidar坐标系下
     */
    void imuDeskewInfo()
    {
        cloudInfo.imuAvailable = false;

        // 从imu队列中删除当前激光帧0.01s前面时刻的imu数据
        while (!imuQueue.empty())
        {
            if (imuQueue.front().header.stamp.toSec() < timeScanCur - 0.01)
                imuQueue.pop_front();
            else
                break;
        }

        if (imuQueue.empty())
            return;

        imuPointerCur = 0;

        // 遍历当前激光帧起止时刻(前后扩展0.01s)之间的imu数据
        for (int i = 0; i < (int)imuQueue.size(); ++i)
        {
            sensor_msgs::Imu thisImuMsg = imuQueue[i];
            double currentImuTime = thisImuMsg.header.stamp.toSec();

            // get roll, pitch, and yaw estimation for this scan
            // 提取imu姿态角RPY,作为当前lidar初始姿态角
            if (currentImuTime <= timeScanCur)
                imuRPY2rosRPY(&thisImuMsg, &cloudInfo.imuRollInit, &cloudInfo.imuPitchInit, &cloudInfo.imuYawInit);

            // 超过当前激光帧结束时刻0.01s,结束
            if (currentImuTime > timeScanEnd + 0.01)
                break;

            // 第一帧imu旋转角初始化
            if (imuPointerCur == 0){
                imuRotX[0] = 0;
                imuRotY[0] = 0;
                imuRotZ[0] = 0;
                imuTime[0] = currentImuTime;
                ++imuPointerCur;
                continue;
            }

            // 提取imu角速度
            // get angular velocity
            double angular_x, angular_y, angular_z;
            imuAngular2rosAngular(&thisImuMsg, &angular_x, &angular_y, &angular_z);

            // imu帧间时差
            // integrate rotation
            double timeDiff = currentImuTime - imuTime[imuPointerCur-1];
            // 当前时刻旋转角 = 前一时刻旋转角 + 角速度*时差
            imuRotX[imuPointerCur] = imuRotX[imuPointerCur-1] + angular_x * timeDiff;
            imuRotY[imuPointerCur] = imuRotY[imuPointerCur-1] + angular_y * timeDiff;
            imuRotZ[imuPointerCur] = imuRotZ[imuPointerCur-1] + angular_z * timeDiff;
            imuTime[imuPointerCur] = currentImuTime;
            ++imuPointerCur;
        }

        --imuPointerCur;

        // 没有合规的imu数据 
        if (imuPointerCur <= 0)
            return;

        cloudInfo.imuAvailable = true;
    }


    /**
     * 当前帧对应imu里程计处理
     * 1. 遍历当前激光帧起止时刻之间的imu里程计数据,初始时刻对应imu里程计设为当前帧的初始位姿
     * 2.用起始,终止时刻对应imu里程计,计算相对位姿变换,保存平移增量
     * 注:imu数据都已经转换到lidar坐标系下
     */
    void odomDeskewInfo()
    {
        cloudInfo.odomAvailable = false;

        //从imu里程计队列中删除当前激光帧0.01s前面时刻的imu数据
        while (!odomQueue.empty())
        {
            if (odomQueue.front().header.stamp.toSec() < timeScanCur - 0.01)
                odomQueue.pop_front();
            else
                break;
        }

        if (odomQueue.empty())
            return;

        // 要求必须有当前激光帧时刻之间的imu里程计数据
        if (odomQueue.front().header.stamp.toSec() > timeScanCur)
            return;

        // get start odometry at the beinning of the scan
        // 提取当前激光帧起始时刻的imu里程计
        nav_msgs::Odometry startOdomMsg;

        for (int i = 0; i < (int)odomQueue.size(); ++i)
        {
            startOdomMsg = odomQueue[i];

            if (ROS_TIME(&startOdomMsg) < timeScanCur)
                continue;
            else
                break;
        }

        // 提取imu里程计姿态角
        tf::Quaternion orientation;
        tf::quaternionMsgToTF(startOdomMsg.pose.pose.orientation, orientation);

        double roll, pitch, yaw;
        tf::Matrix3x3(orientation).getRPY(roll, pitch, yaw);


        // Initial guess used in mapOptimization
        // 用当前激光帧起始时刻的imu里程计,初始化lidar位姿,后面用于mapOptmization
        cloudInfo.initialGuessX = startOdomMsg.pose.pose.position.x;
        cloudInfo.initialGuessY = startOdomMsg.pose.pose.position.y;
        cloudInfo.initialGuessZ = startOdomMsg.pose.pose.position.z;
        cloudInfo.initialGuessRoll  = roll;
        cloudInfo.initialGuessPitch = pitch;
        cloudInfo.initialGuessYaw   = yaw;

        cloudInfo.odomAvailable = true;

        // get end odometry at the end of the scan
        odomDeskewFlag = false;

        // 如果当前激光帧结束时刻之后没有imu里程计数据,返回
        if (odomQueue.back().header.stamp.toSec() < timeScanEnd)
            return;

        //提取当前激光帧结束时刻的imu里程计
        nav_msgs::Odometry endOdomMsg;

        for (int i = 0; i < (int)odomQueue.size(); ++i)
        {
            endOdomMsg = odomQueue[i];

            if (ROS_TIME(&endOdomMsg) < timeScanEnd)
                continue;
            else
                break;
        }

        // 如果起止时刻对应的imu里程计的方差不等,返回
        if (int(round(startOdomMsg.pose.covariance[0])) != int(round(endOdomMsg.pose.covariance[0])))
            return;

        Eigen::Affine3f transBegin = pcl::getTransformation(startOdomMsg.pose.pose.position.x, startOdomMsg.pose.pose.position.y, startOdomMsg.pose.pose.position.z, roll, pitch, yaw);

        tf::quaternionMsgToTF(endOdomMsg.pose.pose.orientation, orientation);
        tf::Matrix3x3(orientation).getRPY(roll, pitch, yaw);
        Eigen::Affine3f transEnd = pcl::getTransformation(endOdomMsg.pose.pose.position.x, endOdomMsg.pose.pose.position.y, endOdomMsg.pose.pose.position.z, roll, pitch, yaw);

        Eigen::Affine3f transBt = transBegin.inverse() * transEnd;

        // 相对变换,提取增量平移,旋转(欧拉角)
        float rollIncre, pitchIncre, yawIncre;
        pcl::getTranslationAndEulerAngles(transBt, odomIncreX, odomIncreY, odomIncreZ, rollIncre, pitchIncre, yawIncre);

        odomDeskewFlag = true;
    }

在当前激光帧起止时间范围内,计算某一时刻的旋转、平移增量:

    /**
     * 在当前激光帧起止时间范围内,计算某一时刻的旋转(相对于起始时刻的旋转增量)
     */ 
    void findRotation(double pointTime, float *rotXCur, float *rotYCur, float *rotZCur)
    {
        *rotXCur = 0; *rotYCur = 0; *rotZCur = 0;

        // 查找当前时刻在imuTime下的索引
        int imuPointerFront = 0;
        while (imuPointerFront < imuPointerCur)
        {
            if (pointTime < imuTime[imuPointerFront])
                break;
            ++imuPointerFront;
        }

        // 设为离当前时刻最近的旋转增量
        if (pointTime > imuTime[imuPointerFront] || imuPointerFront == 0)
        {
            *rotXCur = imuRotX[imuPointerFront];
            *rotYCur = imuRotY[imuPointerFront];
            *rotZCur = imuRotZ[imuPointerFront];
        } else {
            // 前后时刻插值计算当前时刻的旋转增量
            int imuPointerBack = imuPointerFront - 1;
            double ratioFront = (pointTime - imuTime[imuPointerBack]) / (imuTime[imuPointerFront] - imuTime[imuPointerBack]);
            double ratioBack = (imuTime[imuPointerFront] - pointTime) / (imuTime[imuPointerFront] - imuTime[imuPointerBack]);
            *rotXCur = imuRotX[imuPointerFront] * ratioFront + imuRotX[imuPointerBack] * ratioBack;
            *rotYCur = imuRotY[imuPointerFront] * ratioFront + imuRotY[imuPointerBack] * ratioBack;
            *rotZCur = imuRotZ[imuPointerFront] * ratioFront + imuRotZ[imuPointerBack] * ratioBack;
        }
    }


    /**
     * 在当前激光帧起止时间范围内,计算某一时刻的平移(相对于起始时刻的平移增量)
     */
    void findPosition(double relTime, float *posXCur, float *posYCur, float *posZCur)
    {
        // 如果传感器移动速度较慢,例如人行走的速度,那么可以认为激光在一帧时间范围内,平移量小到可以忽略不记
        *posXCur = 0; *posYCur = 0; *posZCur = 0;

        // If the sensor moves relatively slow, like walking speed, positional deskew seems to have little benefits. Thus code below is commented.

        // if (cloudInfo.odomAvailable == false || odomDeskewFlag == false)
        //     return;

        // float ratio = relTime / (timeScanEnd - timeScanCur);

        // *posXCur = ratio * odomIncreX;
        // *posYCur = ratio * odomIncreY;
        // *posZCur = ratio * odomIncreZ;
    }

激光点运动畸变矫正:

    //激光点运动畸变矫正
    /**
     * 激光运动畸变矫正
     * 利用当前帧起止时刻之间的imu数据计算旋转增量,imu里程计数据计算平移增量,进而将每一时刻激光点位置变换到第一个激光点坐标系下,进行运动补偿
     */
    PointType deskewPoint(PointType *point, double relTime)
    {
        if (deskewFlag == -1 || cloudInfo.imuAvailable == false)
            return *point;

        // relTime 是当前激光点相对于激光帧起始时刻的时间,pointTime则是当前激光点的时间戳
        double pointTime = timeScanCur + relTime;

        // 在当前激光帧起止时间范围内,计算某一时刻的旋转(相对于起始时刻的旋转增量)
        float rotXCur, rotYCur, rotZCur;
        findRotation(pointTime, &rotXCur, &rotYCur, &rotZCur);
        // 在当前激光帧起止时间范围内,计算某一时刻的平移(相对于起始时刻的平移增量)
        float posXCur, posYCur, posZCur;
        findPosition(relTime, &posXCur, &posYCur, &posZCur);

        // 第一个点的位姿增量(0),求逆
        if (firstPointFlag == true)
        {
            transStartInverse = (pcl::getTransformation(posXCur, posYCur, posZCur, rotXCur, rotYCur, rotZCur)).inverse();
            firstPointFlag = false;
        }

        // transform points to start 当前时刻激光点与第一个激光点的位姿变换
        Eigen::Affine3f transFinal = pcl::getTransformation(posXCur, posYCur, posZCur, rotXCur, rotYCur, rotZCur);
        Eigen::Affine3f transBt = transStartInverse * transFinal;

        // 当前激光点在第一个激光点坐标系下的坐标
        PointType newPoint;
        newPoint.x = transBt(0,0) * point->x + transBt(0,1) * point->y + transBt(0,2) * point->z + transBt(0,3);
        newPoint.y = transBt(1,0) * point->x + transBt(1,1) * point->y + transBt(1,2) * point->z + transBt(1,3);
        newPoint.z = transBt(2,0) * point->x + transBt(2,1) * point->y + transBt(2,2) * point->z + transBt(2,3);
        newPoint.intensity = point->intensity;

        return newPoint;
    }

畸变矫正后的点云保存,提取有效点,发布:

    // 畸变矫正后的点云保存,提取有效点,发布
    /**
     * 当前帧激光点云运动畸变矫正
     * 1.检查激光点距离,扫描线是否合规
     * 2.激光运动畸变矫正,保存激光点
     */
    void projectPointCloud()
    {
        int cloudSize = laserCloudIn->points.size();
        // range image projection
        // 遍历当前激光帧点云
        for (int i = 0; i < cloudSize; ++i)
        {
            // pcl格式
            PointType thisPoint;
            thisPoint.x = laserCloudIn->points[i].x;
            thisPoint.y = laserCloudIn->points[i].y;
            thisPoint.z = laserCloudIn->points[i].z;
            thisPoint.intensity = laserCloudIn->points[i].intensity;

            // 距离检查
            float range = pointDistance(thisPoint);
            if (range < lidarMinRange || range > lidarMaxRange)
                continue;

            // 扫描线检查
            int rowIdn = laserCloudIn->points[i].ring;
            if (rowIdn < 0 || rowIdn >= N_SCAN)
                continue;
            // 扫描线如果有降采样,跳过采样的扫描线这里要跳过
            if (rowIdn % downsampleRate != 0)
                continue;

            float horizonAngle = atan2(thisPoint.x, thisPoint.y) * 180 / M_PI;

            // 水平扫描角度步长,例如一周扫描1800次,则两次扫描间隔角度0.2°
            static float ang_res_x = 360.0/float(Horizon_SCAN);
            int columnIdn = -round((horizonAngle-90.0)/ang_res_x) + Horizon_SCAN/2;
            if (columnIdn >= Horizon_SCAN)
                columnIdn -= Horizon_SCAN;

            if (columnIdn < 0 || columnIdn >= Horizon_SCAN)
                continue;

            // 已经存过该点,不再处理
            if (rangeMat.at<float>(rowIdn, columnIdn) != FLT_MAX)
                continue;

            // 激光运动畸变矫正
            // 利用当前帧起止时刻之间的imu数据计算旋转增量,imu里程计数据计算平移增量,进而将每一时刻激光点位置变换到第一个激光点坐标系下,进行运动补偿
            thisPoint = deskewPoint(&thisPoint, laserCloudIn->points[i].time);

            //矩阵存激光点的距离
            rangeMat.at<float>(rowIdn, columnIdn) = range;

            // 转换成一维索引,存矫正之后的激光点
            int index = columnIdn + rowIdn * Horizon_SCAN;
            fullCloud->points[index] = thisPoint;
        }
    }

提取有效激光点并发布:

    /**
     * 提取有效激光点,存extractedCloud
     */
    void cloudExtraction()
    {
        // 有效激光点的数量
        int count = 0;
        // extract segmented cloud for lidar odometry
        // 遍历所有激光点
        for (int i = 0; i < N_SCAN; ++i)
        {
            // 记录每根扫描线起始第五个激光点在一维数组中的索引
            cloudInfo.startRingIndex[i] = count - 1 + 5;

            for (int j = 0; j < Horizon_SCAN; ++j)
            {
                // 有效激光点
                if (rangeMat.at<float>(i,j) != FLT_MAX)
                {
                    // mark the points' column index for marking occlusion later
                    // 记录激光点对应的Horizon_SCAN方向上的索引
                    cloudInfo.pointColInd[count] = j;
                    // save range info 激光点距离
                    cloudInfo.pointRange[count] = rangeMat.at<float>(i,j);
                    // save extracted cloud  加入有效激光点
                    extractedCloud->push_back(fullCloud->points[j + i*Horizon_SCAN]);
                    // size of extracted cloud
                    ++count;
                }
            }
            // 记录每根扫描线倒数第五个激光点在一维数组中的索引
            cloudInfo.endRingIndex[i] = count -1 - 5;
        }
    }
    
    /**
     * 发布当前帧矫正后点云,有效点
     */
    void publishClouds()
    {
        cloudInfo.header = cloudHeader;
        cloudInfo.cloud_deskewed  = publishCloud(&pubExtractedCloud, extractedCloud, cloudHeader.stamp, lidarFrame);
        pubLaserCloudInfo.publish(cloudInfo);
    }
};

主函数:

int main(int argc, char** argv)
{
    ros::init(argc, argv, "lio_sam");

    ImageProjection IP;
    
    ROS_INFO("\033[1;32m----> Image Projection Started.\033[0m");

    ros::MultiThreadedSpinner spinner(3);
    spinner.spin();
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JaydenQ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值