SHENLAN_路径规划_Chapter5_HW1_通过数值优化方法解Minimum Snap的轨迹生成问题

路径规划_Chapter5_HW1_通过数值优化方法解Minimum Snap的轨迹生成问题


前言:
第一次写CSDN博客,用我家蛋蛋记录一下,谢谢! 写博客的主要目的是想和大家相互交流学习
蛋蛋

1.原理

求解Q的方法:

解目标函数为Minimum Snap,多项式表达式为七次多项式
f ( t ) = ∑ i p i t i = p 7 t 7 + p 6 t 6 + p 5 t 5 + p 4 t 4 + p 3 t 3 + p 2 t 2 + p 1 t + p 0 f(t)=\sum\limits_{i}p_it^i=p_7t^7 + p_6t^6 + p_5t^5 + p_4t^4 + p_3t^3 + p_2t^2 + p_1t + p_0 f(t)=ipiti=p7t7+p6t6+p5t5+p4t4+p3t3+p2t2+p1t+p0
Cost funciton为Minimum Snap,
每段轨迹的Cost funciton为f(t)的4次导数的平方 J k ( T ) = ∫ T k − 1 T k ( f 4 ( t ) ) 2 d t J_k(T)=\int_{T_{k-1}}^{T_k}(f^4(t))^2dt Jk(T)=Tk1Tk(f4(t))2dt
经过推导得出
J k ( T ) = [ ⋮ p i ⋮ ] T [ ⋮ ⋯ i ( i − 1 ) ( i − 2 ) ( i − 3 ) l ( l − 1 ) ( l − 2 ) ( l − 3 ) i + l − 7 T i + l − 7 ⋯ ⋮ ] [ ⋮ p i ⋮ ] = p k T Q k p k J_k(T)=\left[ \begin{matrix} \vdots\\ p_i\\ \vdots \\ \end{matrix} \right]^T\left[ \begin{matrix} & \vdots & \\ \cdots & \frac{i(i-1)(i-2)(i-3)l(l-1)(l-2)(l-3)}{i+l-7}T^{i+l-7} & \cdots \\ & \vdots \\ \end{matrix} \right]\left[ \begin{matrix} \vdots\\ p_i\\ \vdots \\ \end{matrix} \right]=p_k^TQ_kp_k Jk(T)=piTi+l7i(i1)(i2)(i3)l(l1)(l2)(l3)Ti+l7pi=pkTQkpk
其中i和j=[0:n_order],n_order为每段多项式的阶数。Qk为(n_order+1)*n_order+1)的矩阵。
k代表第k段轨迹。
算出每一段轨迹的Qk矩阵,通过对角对阵构造的方法,构造出经过轨迹的总的Q矩阵:
Q = [ Q 1 0 ⋯ 0 0 Q k ⋯ 0 ⋮ ⋮ ⋱ 0 0 0 … Q n s e g ] Q=\left[ \begin{matrix} Q_1 & 0 &\cdots &0 \\ 0 & Q_k &\cdots &0 \\ \vdots & \vdots & \ddots &0 \\ 0 & 0 & \dots & Q_{nseg} \end{matrix}\right] Q=Q1000Qk0000Qnseg

J = p T Q p = [ p 1 ⋮ p k ⋮ p n s e g ] T [ Q 1 0 ⋯ 0 0 Q k ⋯ 0 ⋮ ⋮ ⋱ 0 0 0 … Q n s e g ] [ p 1 ⋮ p k ⋮ p n s e g ] J=p^TQp=\left[ \begin{matrix} p_1 \\ \vdots \\ p_k \\ \vdots \\ p_{nseg} \end{matrix}\right]^T \left[ \begin{matrix} Q_1 & 0 &\cdots &0 \\ 0 & Q_k &\cdots &0 \\ \vdots & \vdots & \ddots &0 \\ 0 & 0 & \dots & Q_{nseg} \end{matrix}\right] \left[ \begin{matrix} p_1 \\ \vdots \\ p_k \\ \vdots \\ p_{nseg} \end{matrix}\right] J=pTQp=p1pkpnsegTQ1000Qk0000Qnsegp1pkpnseg
其中
p k = [ ⋮ p i ⋮ ] p_k=\left[ \begin{matrix} \vdots\\ p_i\\ \vdots \\ \end{matrix} \right] pk=pi

求解等式约束Aeq和beq的方法

f ( t ) = p ( t ) = p 0 + p 1 t + p 2 t 2 + p 3 t 3 + p 4 t 4 + p 5 t 5 + p 6 t 6 + p 7 t 7 f(t)= p(t)=p_0 + p_1t +p_2t^2 + p_3t^3+ p_4t^4+ p_5t^5 + p_6t^6 +p_7t^7 f(t)=p(t)=p0+p1t+p2t2+p3t3+p4t4+p5t5+p6t6+p7t7
f ( 1 ) ( t ) = v ( t ) = 0 + p 1 + p 2 ∗ 2 t + p 3 ∗ 3 t 2 + p 4 ∗ 4 t 3 + p 5 ∗ 5 t 4 + p 6 ∗ 6 t 5 + p 7 ∗ 7 t 6 f^{(1)}(t)= v(t)=0 + p_1 +p_2*2t + p_3*3t^2+ p_4*4t^3+ p_5*5t^4 + p_6*6t^5 +p_7*7t^6 f(1)(t)=v(t)=0+p1+p22t+p33t2+p44t3+p55t4+p66t5+p77t6
f ( 2 ) ( t ) = a ( t ) = 0 + 0 + p 2 ∗ 2 + p 3 ∗ 6 t + p 4 ∗ 12 t 2 + p 5 ∗ 20 t 3 + p 6 ∗ 30 t 4 + p 7 ∗ 42 t 5 f^{(2)}(t)= a(t)=0 + 0 +p_2*2 + p_3*6t+ p_4*12t^2+ p_5*20t^3 + p_6*30t^4 +p_7*42t^5 f(2)(t)=a(t)=0+0+p22+p36t+p412t2+p520t3+p630t4+p742t5
f ( 3 ) ( t ) = j ( t ) = 0 + 0 + 0 + p 3 ∗ 6 + p 4 ∗ 24 t + p 5 ∗ 60 t 2 + p 6 ∗ 120 t 3 + p 7 ∗ 210 t 4 f^{(3)}(t)= j(t)=0 + 0 +0 + p_3*6+ p_4*24t+ p_5*60t^2 + p_6*120t^3 +p_7*210t^4 f(3)(t)=j(t)=0+0+0+p36+p424t+p560t2+p6120t3+p7210t4
写成矩阵形式,则:
[ p ( t ) v ( t ) a ( t ) j ( t ) ] = [ 1 t t 2 t 3 t 4 t 5 t 6 t 7 0 1 2 t 3 t 2 4 t 3 5 t 4 6 t 5 7 t 6 0 0 2 6 t 12 t 2 20 t 3 30 t 4 42 t 5 0 0 0 6 24 t 60 t 2 120 t 3 210 t 4 ] [ p 0 p 1 p 2 p 3 p 4 p 5 p 6 p 7 ] \left[ \begin{matrix} p(t)\\ v(t)\\ a(t)\\ j(t)\\ \end{matrix} \right]=\left[ \begin{matrix} 1 &t &t^2 &t^3 &t^4 &t^5 &t^6 &t^7 \\ 0 &1 &2t &3t^2 &4t^3 &5t^4 &6t^5 &7t^6 \\ 0 &0 &2 &6t &12t^2 &20t^3 &30t^4 &42t^5 \\ 0 &0 &0 &6 &24t &60t^2 &120t^3 &210t^4 \\ \end{matrix} \right] \left[ \begin{matrix} p_0\\ p_1\\ p_2\\ p_3\\ p_4\\ p_5\\ p_6\\ p_7\\ \end{matrix} \right] p(t)v(t)a(t)j(t)=1000t100t22t20t33t26t6t44t312t224tt55t420t360t2t66t530t4120t3t77t642t5210t4p0p1p2p3p4p5p6p7
对应着
b e q = A e q [ p 0 p 1 p 2 p 3 p 4 p 5 p 6 p 7 ] beq=Aeq \left[ \begin{matrix} p_0\\ p_1\\ p_2\\ p_3\\ p_4\\ p_5\\ p_6\\ p_7\\ \end{matrix} \right] beq=Aeqp0p1p2p3p4p5p6p7
起始点和终止点指定了p,v,a,j
起始点的[p,v,a,j]=[point_start,0,0,0],v,a,j都为0,因为是从静止开始出发的。
则start_point点的 b e q = [ p o i n t s t a r t , 0 , 0 , 0 ] T beq=[point_{start},0,0,0]^T beq=[pointstart,0,0,0]T
把t=0代入Aeq表达式

A e q s t a r t p o i n t = [ 1 0 0 0 0 0 0 0 ⋯ 0 1 0 0 0 0 0 0 ⋯ 0 0 2 0 0 0 0 0 ⋯ 0 0 0 6 0 0 0 0 ⋯ ] Aeq_{startpoint}=\left[ \begin{matrix} 1 &0 &0 &0 &0 &0 &0 &0 &\cdots \\ 0 &1 &0 &0 &0 &0 &0 &0 &\cdots \\ 0 &0 &2 &0 &0 &0 &0 &0 &\cdots \\ 0 &0 &0 &6 &0 &0 &0 &0 &\cdots\\ \end{matrix} \right] Aeqstartpoint=10000100002000060000000000000000
终止点的[p,v,a,j]=[point_end,0,0,0],v,a,j都为0,因为到终点是需要静止。终点状态的t=ts_end

A e q e n d p o i n t = [ 0 ⋯ 1 t s e n d t s e n d 2 t s e n d 3 t s e n d 4 t s e n d 5 t s e n d 6 t s e n d 7 0 ⋯ 0 1 2 t s e n d 3 t s e n d 2 4 t s e n d 3 5 t s e n d 4 6 t s e n d 5 7 t s e n d 6 0 ⋯ 0 0 2 6 t s e n d 12 t s e n d 2 20 t s e n d 3 30 t s e n d 4 42 t s e n d 5 0 ⋯ 0 0 0 6 24 t s e n d 60 t s e n d 2 120 t s e n d 3 210 t s e n d 4 ] Aeq_{endpoint}= \left[ \begin{matrix} 0 &\cdots & 1 &ts_{end} &ts_{end}^2 &ts_{end}^3 &ts_{end}^4 &ts_{end}^5 &ts_{end}^6 &ts_{end}^7 \\ 0 &\cdots & 0 &1 &2ts_{end} &3ts_{end}^2 &4ts_{end}^3 &5ts_{end}^4 &6ts_{end}^5 &7ts_{end}^6 \\ 0 &\cdots & 0 &0 &2 &6ts_{end} &12ts_{end}^2 &20ts_{end}^3 &30ts_{end}^4 &42ts_{end}^5 \\ 0 &\cdots & 0 &0 &0 &6 &24ts_{end} &60ts_{end}^2 &120ts_{end}^3 &210ts_{end}^4 \\ \end{matrix} \right] Aeqendpoint=00001000tsend100tsend22tsend20tsend33tsend26tsend6tsend44tsend312tsend224tsendtsend55tsend420tsend360tsend2tsend66tsend530tsend4120tsend3tsend77tsend642tsend5210tsend4
其中ts_end为最后一段轨迹的时间T,需要说明的是,每一段的T都是单独的[0,ts_n],如下图所示:
在这里插入图片描述
除了起始点和终止点,中间点都只限制了必须要经过该中间点,也就是限制了中间点的p,而v,a,j都是可变的优化项。
由此,先列出和中间点位置相关的Aeq和beq:
b e q w a y p o i n t = [ p s e g ( 1 ) e n d p o i n t p s e g ( 2 ) e n d p o i n t ⋮ p s e g ( n s e g − 1 ) e n d p o i n t ] beq_{waypoint}= \left[ \begin{matrix} p_{seg(1)endpoint}\\ p_{seg(2)endpoint}\\ \vdots\\ p_{seg(n_{seg}-1)endpoint}\\ \end{matrix} \right] beqwaypoint=pseg(1)endpointpseg(2)endpointpseg(nseg1)endpoint
p_{seg(k)endpoint}代表第k段轨迹的末端。
A e q w a y p o i n t = [ 1 t s 1 t s 1 2 t s 1 3 t s 1 d 4 t s 1 5 t s 1 6 t s 1 7 0 ⋯ ⋯ 0 ⋯ 1 t s 2 t s 2 2 t s 2 3 t s 2 4 t s 2 5 t s 2 6 t s 2 7 0 0 ⋯ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 ⋯ ⋯ 1 t s n s e g − 1 t s n s e g − 1 2 t s n s e g − 1 3 t s n s e g − 1 4 t s n s e g − 1 5 t s n s e g − 1 6 t s n s e g − 1 7 ] Aeq_{waypoint}=\left[ \begin{matrix} 1 &ts_{1} &ts_{1}^2 &ts_{1}^3 &ts_{1d}^4 &ts_{1}^5 &ts_{1}^6 &ts_{1}^7 &0 &\cdots &\cdots \\ 0 & \cdots & 1 &ts_{2} &ts_{2}^2 &ts_{2}^3 &ts_{2}^4 &ts_{2}^5 &ts_{2}^6 &ts_{2}^7&0 \\ 0& \cdots &\vdots &\vdots &\vdots &\vdots &\vdots &\vdots &\vdots &\vdots &\vdots \\ 0 & \cdots & \cdots & 1 &ts_{n_{seg}-1} &ts_{n_{seg}-1}^2 &ts_{n_{seg}-1}^3 &ts_{n_{seg}-1}^4 &ts_{n_{seg}-1}^5 &ts_{n_{seg}-1}^6 &ts_{n_{seg}-1}^7 \\ \end{matrix} \right] Aeqwaypoint=1000ts1ts121ts13ts21ts1d4ts22tsnseg1ts15ts23tsnseg12ts16ts24tsnseg13ts17ts25tsnseg140ts26tsnseg15ts27tsnseg160tsnseg17
根据连续性约束,第一段轨迹的终点和第二段轨迹的起点相同,第二段轨迹的终点和第三段轨迹的起点相同:
f 1 ( t s 1 ) − f 2 ( 0 ) = 0 , f 2 ( t s 2 ) − f 3 ( 0 ) = 0 f_1(ts_1)-f_2(0)=0,f_2(ts_2)-f_3(0)=0 f1(ts1)f2(0)=0,f2(ts2)f3(0)=0
,以此类推v,a,j,则可以得出下图通过Excel表格做出的表达式中第13-20行的形式。
在这里插入图片描述

2.代码分析

基于Matlab的代码实现,求解的工具是通过得出Aeq和beq,通过poly_coef = quadprog(Q,f,[],[],Aeq, beq)得到三段轨迹的七阶多项式的系数。
matlab中quadprog的用法:
在这里插入图片描述
在这里插入图片描述
H是二阶的相关矩阵,f是一阶的相关矩阵,在这里H就是我们求的Q,由于没有一阶项,f则为0向量。
且没有不等式约束和输入变量约束,则A、b、lb、ub都为0,若有相关约束则可以加上。

分别独立求出x(t)和y(t),就能得到y-x轨迹图。

// hw1_1.m
% 通过ginput()函数获取通过鼠标点击的路径中间点
clc;clear;close all;
path = ginput() * 100.0;
%load("path.mat");

% 定义每段多项式的阶数、通过输入的路径点数算出有几段、每段多项式的系数个数
n_order       = 7;% order of poly
n_seg         = size(path,1)-1;% segment number
n_poly_perseg = (n_order+1); % coef number of perseg

%先定义一个数组ts,用于存储n_seg段,每段轨迹的时间T
ts = zeros(n_seg, 1);
% calculate time distribution in proportion to distance between 2 points
% 通过计算两个点之间的欧拉距离(两点之间的直线距离)来分配每段轨迹的时间T
dist     = zeros(n_seg, 1);
dist_sum = 0;
T        = 1; % 通过所有段轨迹的总时间T
t_sum    = 0;
% 算出序号临近的i和i+1点之间的距离总和dist_sum
for i = 1:n_seg
    dist(i) = sqrt((path(i+1, 1)-path(i, 1))^2 + (path(i+1, 2) - path(i, 2))^2);
    dist_sum = dist_sum+dist(i);
end
% 计算出每段轨迹的时间ts
for i = 1:n_seg-1
    ts(i) = dist(i)/dist_sum*T;
    t_sum = t_sum+ts(i);
end
ts(n_seg) = T - t_sum;

% or you can simply set all time distribution as 1
% for i = 1:n_seg
%     ts(i) = 1.0;
% end

poly_coef_x = MinimumSnapQPSolver(path(:, 1), ts, n_seg, n_order);
poly_coef_y = MinimumSnapQPSolver(path(:, 2), ts, n_seg, n_order);


% display the trajectory
X_n = [];
Y_n = [];
k = 1;
tstep = 0.01;
for i=0:n_seg-1
    %#####################################################
    % STEP 3: get the coefficients of i-th segment of both x-axis
    % and y-axis
    %提取出每一段7次多项式的系数
    Pxi = poly_coef_x((n_order+1)*(i)+1:(n_order+1)*(i)+n_order+1);
    Pyi = poly_coef_y((n_order+1)*(i)+1:(n_order+1)*(i)+n_order+1);
    for t = 0:tstep:ts(i+1)
        X_n(k)  = polyval(flip(Pxi), t);  %得到的多项式系数是前后倒置,需要顺序反过来
        Y_n(k)  = polyval(flip(Pyi), t);
        k = k + 1;
    end
end
 
plot(X_n, Y_n , 'Color', [0 1.0 0], 'LineWidth', 2);
hold on
scatter(path(1:size(path, 1), 1), path(1:size(path, 1), 2));
% MinimumSnapQPSolver函数用于构建求解QP问题,构建Q矩阵和等式约束Aeq及beq
function poly_coef = MinimumSnapQPSolver(waypoints, ts, n_seg, n_order)
    start_cond = [waypoints(1), 0, 0, 0];
    end_cond   = [waypoints(end), 0, 0, 0];
    %#####################################################
    % STEP 1: compute Q of p'Qp
    Q = getQ(n_seg, n_order, ts);
    %#####################################################
    % STEP 2: compute Aeq and beq 
    [Aeq, beq] = getAbeq(n_seg, n_order, waypoints, ts, start_cond, end_cond);
    f = zeros(size(Q,1),1);
    poly_coef = quadprog(Q,f,[],[],Aeq, beq);
end

求Q矩阵是关键一步。每段轨迹的Qk矩阵主要是和每一段轨迹分配的时间Ts有关。

%getQ.m,用于计算二次型的Q矩阵
%这里的i和j代表行和列,在这里行和列的数量相同为n_order+1,计算出每一段轨迹的Qj矩阵,再通过对角矩阵的方法把所有轨迹的Q矩阵连接成对角矩阵为总的Qfunction Q = getQ(n_seg, n_order, ts)
    Q = [];
    fac = @(x) x*(x-1)*(x-2)*(x-3);
    for k = 1:n_seg
        Q_k = [];
        %#####################################################
        % STEP 1.1: calculate Q_k of the k-th segment 
       Q_k = zeros(n_order+1,n_order+1);

        for i = 0:n_order
            for j = 0:n_order
                if (i < 4) || (j < 4)
                    continue;
                else
                    Q_k(i + 1,j + 1) = fac(i) * fac(j)/(i + j - 7) * ts(k) ^ (i + j -7); 
                end
            end
        end
        Q = blkdiag(Q, Q_k);
    end
end

求beq

% getAbeq.m
function [Aeq beq]= getAbeq(n_seg, n_order, waypoints, ts, start_cond, end_cond)
    n_all_poly = n_seg*(n_order+1);
    %#####################################################
    % p,v,a,j constraint in start, 
    Aeq_start = zeros(4, n_all_poly);
    beq_start = start_cond'; %起始点的约束的等式值,p有数,v,a,j都是0
    % STEP 2.1: write expression of Aeq_start and beq_start
    Aeq_start(1:4,1:8) = Coeff(0);  %起始点的约束方程的多项式系数的矩阵,放到最前面(第一段曲线)
    %
    %
    %
    
    %#####################################################
    % p,v,a,j constraint in end
    Aeq_end = zeros(4, n_all_poly);
    beq_end = end_cond';%终止点的约束的等式值,p有数,v,a,j都是0
    % STEP 2.2: write expression of Aeq_end and beq_end
    t = ts(end);
    Aeq_end(1:4, end-7:end) = Coeff(t); %终止点的约束方程的多项式系数的矩阵,放到最后(最后一段曲线)
    %
    %
    %
    
    %#####################################################
    % position constrain in all middle waypoints
    Aeq_wp = zeros(n_seg-1, n_all_poly); %中间点的个数是n_seg(曲线段数)-1个,只需要约束p,所以v,a,j不写出来
    beq_wp = zeros(n_seg-1, 1);
    % STEP 2.3: write expression of Aeq_wp and beq_wp
    for k = 0:1:n_seg-2
        beq_wp(k+1,1) = waypoints(k+2); %中间点的约束为对应的p
        tempcoeff = Coeff(ts(k+1));
        Aeq_wp(k+1,1+k*8:8+k*8) = tempcoeff(1,:);  %中间点只有p约束,v, a,j不做约束
    end
    
    %#####################################################
    % position continuity constrain between each 2 segments
    Aeq_con_p = zeros(n_seg-1, n_all_poly);
    beq_con_p = zeros(n_seg-1, 1);
    % STEP 2.4: write expression of Aeq_con_p and beq_con_p
    for k = 0:1:n_seg-2 % here k is the index of segments
        tempcoeff = Coeff(ts(k+1));
        Aeq_con_p(1+k,1+8*k:8+8*k) = tempcoeff(1,:); %中间点左侧曲线该点的 p v a j的系数矩阵
        tempcoeff = Coeff(0);
        Aeq_con_p(1+k,1+8*(k+1):8+8*(k+1)) = -tempcoeff(1,:); %中间点右侧曲线该点的 p v a j的系数矩阵,由于每一段曲线的时间是用的相对时间,所以该点右侧的t是0;
    end
    % beq_con_p,v,a,j都是0,因为有约束:p_left-p_right=0,v_left-v_right=0,..,
    
    %#####################################################
    % velocity continuity constrain between each 2 segments
    Aeq_con_v = zeros(n_seg-1, n_all_poly);
    beq_con_v = zeros(n_seg-1, 1);
    % STEP 2.5: write expression of Aeq_con_v and beq_con_v
    for k = 0:1:n_seg-2 % here k is the index of segments
        tempcoeff = Coeff(ts(k+1));
        Aeq_con_v(1+k,1+8*k:8+8*k) = tempcoeff(2,:); %中间点左侧曲线该点的 p v a j的系数矩阵
        tempcoeff = Coeff(0);
        Aeq_con_v(1+k,1+8*(k+1):8+8*(k+1)) = -tempcoeff(2,:); %中间点右侧曲线该点的 p v a j的系数矩阵,由于每一段曲线的时间是用的相对时间,所以该点右侧的t是0;
    end

    %#####################################################
    % acceleration continuity constrain between each 2 segments
    Aeq_con_a = zeros(n_seg-1, n_all_poly);
    beq_con_a = zeros(n_seg-1, 1);
    % STEP 2.6: write expression of Aeq_con_a and beq_con_a
    for k = 0:1:n_seg-2 % here k is the index of segments
        tempcoeff = Coeff(ts(k+1));
        Aeq_con_a(1+k,1+8*k:8+8*k) = tempcoeff(3,:); %中间点左侧曲线该点的 p v a j的系数矩阵
        tempcoeff = Coeff(0);
        Aeq_con_a(1+k,1+8*(k+1):8+8*(k+1)) = -tempcoeff(3,:); %中间点右侧曲线该点的 p v a j的系数矩阵,由于每一段曲线的时间是用的相对时间,所以该点右侧的t是0;
    end
    
    %#####################################################
    % jerk continuity constrain between each 2 segments
    Aeq_con_j = zeros(n_seg-1, n_all_poly);
    beq_con_j = zeros(n_seg-1, 1);
    % STEP 2.7: write expression of Aeq_con_j and beq_con_j
    for k = 0:1:n_seg-2 % here k is the index of segments
        tempcoeff = Coeff(ts(k+1));
        Aeq_con_j(1+k,1+8*k:8+8*k) = tempcoeff(4,:); %中间点左侧曲线该点的 p v a j的系数矩阵
        tempcoeff = Coeff(0);
        Aeq_con_j(1+k,1+8*(k+1):8+8*(k+1)) = -tempcoeff(4,:); %中间点右侧曲线该点的 p v a j的系数矩阵,由于每一段曲线的时间是用的相对时间,所以该点右侧的t是0;
    end
    
    %#####################################################
    % combine all components to form Aeq and beq   
    Aeq_con = [Aeq_con_p; Aeq_con_v; Aeq_con_a; Aeq_con_j];
    beq_con = [beq_con_p; beq_con_v; beq_con_a; beq_con_j];
    Aeq = [Aeq_start; Aeq_end; Aeq_wp; Aeq_con];
    beq = [beq_start; beq_end; beq_wp; beq_con];
end

function coeff = Coeff(t)
% Get the coefficient for Aeq
    coeff = [1,  1*t,  1*t^2,  1*t^3,  1*t^4,  1*t^5,  1*t^6,  1*t^7;
             0,  1,    2*t,    3*t^2,  4*t^3,  5*t^4,  6*t^5,  7*t^6;
             0,  0,    2,      6*t,    12*t^2, 20*t^3, 30*t^4, 42*t^5;
             0,  0,    0,      6,      24*t,   60*t^2, 120*t^3,210*t^4];
end
  • 2
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值