时间序列分析实战(九):时序的协整关系检验

🍉CSDN小墨&晓末:https://blog.csdn.net/jd1813346972

   个人介绍: 研一|统计学|干货分享
         擅长Python、Matlab、R等主流编程软件
         累计十余项国家级比赛奖项,参与研究经费10w、40w级横向

1 目的

  为研究国民生产总值与货币供应量及利率的关系。现收集到1954年1月至1987年10月M1货币量对数序列 l o g ( M 1 ) log(M1) log(M1),美国月度国民生产总值对数序列 l o g ( G N P ) log(GNP) log(GNP),以及短期利率和长期利率序列。该篇文章主要演示:以GNP为响应序列,根据因果检验结果选择适当的自变量,考察自变量与响应变量之间是否具有协整关系。其数据处理方式、单整性检验及单序列的 A R I M A ARIMA ARIMA模型构建见 时间序列分析实战(七):多个变量的ARIMA模型拟合。格兰因果检验见 时间序列分析实战(八):时序的格兰杰因果检验。部分数据情况见表1所示。

表1 部分数据展示

2 拟合回归模型

  选取 l o g ( G N P ) log(GNP) log(GNP)作为响应变量,短期利率及长期利率作为自变量进行建模。

  运行程序:

fit5<-arima(data1$log.GNP.,xreg = data.frame(data1$短期利率,data1$长期利率),
            include.mean=True)#拟合回归模型
fit5

  运行结果:

## 
## Call:
## arima(x = data1$log.GNP., xreg = data.frame(data1$短期利率, data1$长期利率))
## 
## Coefficients:
##       intercept  data1.短期利率  data1.长期利率
##          7.1941         -1.4629         10.3497
## s.e.     0.0310          0.9951          1.0552
## 
## sigma^2 estimated as 0.02076:  log likelihood = 69.99,  aic = -131.98

  利用最小二乘法,得到 l o g ( G N P ) log(GNP) log(GNP)与短期利率、长期利率之间的关系:

l n ( G N P t ) = 7.1941 − 1.4629 S F t + 10.3497 L F t + ϵ t ln(GNP_t)=7.1941-1.4629SF_t+10.3497LF_t+\epsilon_t ln(GNPt)=7.19411.4629SFt+10.3497LFt+ϵt

3 残差单位根检验

  运行程序:

library(aTSA)
adf.test(fit5$residuals) #残差单位根检验

  运行结果:

## Augmented Dickey-Fuller Test 
## alternative: stationary 
##  
## Type 1: no drift no trend 
##      lag   ADF p.value
## [1,]   0 -1.43  0.1650
## [2,]   1 -1.80  0.0721
## [3,]   2 -2.16  0.0319
## [4,]   3 -2.54  0.0124
## [5,]   4 -2.45  0.0161
## Type 2: with drift no trend 
##      lag   ADF p.value
## [1,]   0 -1.42   0.549
## [2,]   1 -1.79   0.411
## [3,]   2 -2.14   0.272
## [4,]   3 -2.52   0.128
## [5,]   4 -2.43   0.163
## Type 3: with drift and trend 
##      lag   ADF p.value
## [1,]   0 -1.57   0.753
## [2,]   1 -1.98   0.580
## [3,]   2 -2.35   0.425
## [4,]   3 -2.72   0.275
## [5,]   4 -2.63   0.314
## ---- 
## Note: in fact, p.value = 0.01 means p.value <= 0.01##                      F-statistic      p-value
## log.GNP. -> log.M1.   0.41454740 5.207960e-01
## 短期利率 -> log.M1.   7.87838611 5.767430e-03
## 长期利率 -> log.M1.   0.07608138 7.831144e-01
## log.M1. -> log.GNP.   2.71052650 1.020851e-01
## 短期利率 -> log.GNP. 27.52683485 6.064881e-07
## 长期利率 -> log.GNP.  5.78941757 1.751886e-02
## log.M1. -> 短期利率   1.58052304 2.109222e-01
## log.GNP. -> 短期利率  2.91622959 9.006134e-02
## 长期利率 -> 短期利率  0.02135744 8.840341e-01
## log.M1. -> 长期利率   0.62414250 4.309398e-01
## log.GNP. -> 长期利率  2.81318243 9.587727e-02
## 短期利率 -> 长期利率  7.44826240 7.222640e-03

  对回归残差进行平稳性检验,根据类型1延迟3阶的检验结果可以认为回归残差序列平稳。

4 EG协整检验

  运行 程序:

coint.test(data1$log.GNP.,data.frame(data1$短期利率,data1$长期利率),d=1,nlag=1)

  运行结果:

## Response: diff(data1$log.GNP.,1) 
## Input: diff(data.frame(data1$短期利率, data1$长期利率),1) 
## Number of inputs: 2 
## Model: y ~ X - 1 
## ------------------------------- 
## Engle-Granger Cointegration Test 
## alternative: cointegrated 
## 
## Type 1: no trend 
##     lag      EG p.value 
##    1.00   -6.39    0.01 
## ----- 
##  Type 2: linear trend 
##     lag      EG p.value 
##    1.00    4.17    0.10 
## ----- 
##  Type 3: quadratic trend 
##     lag      EG p.value 
##    1.00    3.13    0.10 
## ----------- 
## Note: p.value = 0.01 means p.value <= 0.01 
##     : p.value = 0.10 means p.value >= 0.10

  根据EG检验法,发现类型1的p值远小于0.05,可以认为 l o g ( G N P ) log(GNP) log(GNP)与短期利率、长期利率之间存在协整关系。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小墨&晓末

谢谢老板帮助充电!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值