目录
2006-2020上市公司研发投入金额数据集https://download.csdn.net/download/a519573917/89501035
一、引言
协整检验用于分析两个或多个非平稳时间序列之间是否存在长期稳定的均衡关系。在经济、金融等领域有着广泛的应用。本文将详细介绍协整检验在 Stata 中的具体操作步骤,并通过实际数据进行演示。
二、理论原理
非平稳时间序列:如果一个时间序列的均值、方差或自协方差随时间变化而变化,那么这个序列就是非平稳的。例如,经济中的 GDP、股票价格等通常是非平稳的。非平稳时间序列的特征表现为数据存在趋势、季节性或者周期性等。
协整关系:如果两个或多个非平稳时间序列的线性组合是平稳的,那么就称这些序列之间存在协整关系。协整关系反映了变量之间存在长期的均衡关系。这种长期均衡关系可能是由于经济中的内在机制、市场的调节作用或者其他约束条件导致的。
例如,对于消费和收入这两个变量,尽管它们各自可能是非平稳的,但从长期来看,两者之间存在一个稳定的比例关系,即存在协整关系。这意味着在长期中,消费的增长与收入的增长是相互关联和匹配的。
单位根检验:是判断时间序列是否平稳的常用方法。最常见的单位根检验方法是增广迪基 - 富勒(ADF)检验。其基本思想是通过在回归方程中引入滞后项来消除序列的自相关性,然后检验单位根的存在性。如果存在单位根,则序列是非平稳的;反之,如果拒绝单位根存在的假设,则序列是平稳的。
Johansen 协整检验</