前言
临近2025年第一季度末,AI大模型曾以席卷全球之势,仿佛一夜之间,所有行业都在谈论AI,所有企业都在拥抱AI。然而,如同所有技术浪潮的初期一样,狂热之后往往是冷静的回归。我们看到,曾经高歌猛进的AI大模型领域,热度正在逐渐退却,投资趋于理性,部分企业甚至面临裁员的困境。但这并不意味着AI大模型的终结,恰恰相反,这标志着一个更加务实、更加深入的发展阶段的开始。
近两年,AI行业以惊人的速度发展,模型迭代更是瞬息万变,信息洪流带来的内容焦虑和能力焦虑,相信是许多从业者的共同感受。DeepSeek的开源无疑是这波浪潮中的一个重要引爆点,其影响力迅速渗透各行各业,甚至成为街头巷尾的热议话题。随之而来的是ICT及IT厂商纷纷推出大模型一体机,竞逐市场机遇,力求在2025年实现业绩突破。然而,在喧嚣之后,我们更应回归本源,冷静思考:自身真正的需求是什么?具备哪些能力?投入与产出是否符合个人的心理预期和企业的经营目标?
AI大模型发展趋势:从“大而全”走向“专而精”
回顾过去两年,AI大模型的发展主要集中在模型规模的扩张和通用能力的提升。我们见证了参数量从千亿级到万亿级的飞跃,以及在文本生成、语言理解、知识问答等多个领域的突破。然而,这种“大而全”的模式也暴露出诸多问题,例如高昂的训练成本、巨大的算力需求、以及在特定行业和场景下的性能瓶颈。
当前,AI大模型的发展趋势正在发生转变,逐渐从追求通用能力转向深耕垂直领域和特定场景。“专而精”成为新的关键词。我们可以预见以下几个主要趋势:
- 垂直领域模型的涌现: 针对金融、医疗、教育、法律等特定行业,将出现更多经过行业数据精细训练和优化的垂直大模型。这些模型能够更好地理解行业Know-how,提供更精准、更专业的服务。
- 多模态能力的融合: 纯文本的大模型已经无法满足日益复杂的需求。未来,能够处理图像、音频、视频等多模态信息的大模型将成为主流,为用户提供更丰富、更直观的交互体验。
- 轻量化和边缘化部署: 为了降低部署成本和提高响应速度,模型轻量化技术将得到进一步发展。同时,随着边缘计算能力的提升,AI大模型将逐渐走向边缘侧,实现更低延迟、更安全的数据处理。
- 可解释性和可信赖性提升: 当前大模型的“黑箱”特性限制了其在关键领域的应用。未来,提升模型的可解释性和可信赖性将成为重要的研究方向,例如通过引入因果推理、知识图谱等技术,让AI的决策过程更加透明和可控。
AI大模型在ToB、ToC、ToG领域的发展方向:深耕场景,创造价值
热度退却后,AI大模型将更加注重在实际场景中的应用,为不同领域的用户创造真正的价值。
ToB(企业服务):
- 智能化办公: 利用大模型赋能企业内部知识管理、文档生成、会议记录、智能助手等,提高办公效率。
- 客户服务升级: 通过智能客服、个性化推荐、营销内容生成等,提升客户体验和营销效果。
- 行业解决方案: 在金融风控、智能制造、供应链优化、药物研发等领域,利用垂直大模型提供定制化的解决方案。
- 数据分析与决策支持: 通过对海量数据的分析和挖掘,为企业提供更精准的商业洞察和决策依据。
ToC(消费者服务):
- 个性化内容推荐: 基于用户画像和行为数据,提供更精准、更符合用户兴趣的内容推荐,例如新闻、音乐、视频、商品等。
- 智能助手与虚拟伙伴: 提供更智能、更自然的语音交互体验,成为用户的个人助理、学习伙伴、娱乐伙伴。
- 创意内容生成: 帮助用户生成高质量的文本、图像、音乐、视频等创意内容,降低创作门槛。
- 教育与娱乐创新: 在线教育、游戏娱乐等领域,利用大模型提供更个性化、更沉浸式的学习和娱乐体验。
ToG(政府服务):
- 智慧城市建设: 利用大模型分析城市运行数据,优化交通管理、能源分配、公共安全等,提升城市治理效率。
- 公共服务优化: 在政务咨询、政策解读、公共信息发布等领域,提供更便捷、更智能的服务。
- 社会治理能力提升: 通过对舆情信息的分析和预测,辅助政府进行风险预警和决策。
- 科研创新支持: 利用大模型加速科学研究,例如在气象预测、环境保护、疾病防控等领域。
企业与个人如何去掉浮躁,做自己能做的事情?
面对AI大模型热度的退却,企业和个人都需要放下追逐风口的浮躁心态,回归理性,聚焦自身能力和实际需求。那么,在这样的演进趋势下,企业和个人应该如何应对呢?
对于企业而言:
- 明确自身需求和痛点: 不要盲目跟风,而是要认真分析自身业务场景,找到真正能够通过AI大模型解决的问题。
- 聚焦细分领域和场景: 避免追求“大而全”的通用模型,而是要选择或定制适合自身业务的垂直领域模型或解决方案。
- 重视数据质量和安全: 高质量的数据是训练和应用大模型的基础,同时要高度重视数据安全和隐私保护。
- 培养内部AI能力: 建立专业的AI团队,掌握模型训练、部署和应用的技术能力,避免过度依赖外部供应商。
- 注重实际应用和价值创造: 将AI大模型真正融入到业务流程中,通过实际应用来验证其价值,并不断优化和迭代。
对于个人而言:
- 提升AI素养和认知: 了解AI大模型的基本原理、能力边界和潜在风险,避免过度神化或恐慌。
- 学习相关技能: 关注AI领域的发展动态,学习与AI相关的编程、数据分析、自然语言处理等技能,提升自身竞争力。
- 探索AI在工作和生活中的应用: 尝试使用各种AI工具和应用,了解其功能和价值,找到能够提升效率和生活质量的应用场景。
- 保持批判性思维: 面对AI生成的内容和信息,要保持独立思考和判断能力,避免被误导或滥用。
未来三年演进图谱
为了更清晰地展望AI大模型在未来三年的发展方向,我们绘制了以下演进图谱,其中涵盖了垂直模型、多模态能力、轻量化与边缘计算、可信AI、商业模式以及AI原生应用等关键领域。这些领域的发展目标和破局关键,正是对前文讨论的“专而精”、“多模态”、“轻量化”等趋势的进一步具象化。
领域 | 2025里程碑 | 2026目标 | 破局关键 |
---|---|---|---|
垂直模型 | 10万亿参数级行业模型普及 | 跨行业知识迁移系统成熟 | 构建高质量行业数据集,突破模型泛化能力瓶颈,实现不同行业知识的有效融合与迁移。 |
多模态 | 视频生成物理误差<1% | 实时全息交互技术落地 | 提升模型对多模态数据的理解和生成能力,解决跨模态信息对齐和融合的难题,突破物理规律限制,实现高保真、低延迟的实时全息交互。 |
轻量化/边缘计算 | 50%手机搭载端侧大模型 | 工业设备端侧推理覆盖率超80% | 研发高效的模型压缩和加速算法,突破端侧算力瓶颈,开发低功耗、高性能的存算一体芯片,实现AI模型在资源受限环境下的高效部署和推理。 |
可信AI | 可解释性评分纳入产品认证 | 全球统一伦理评估框架 | 建立完善的可解释性评估体系,将可解释性作为AI产品的重要指标,制定全球统一的AI伦理评估框架和技术标准,平衡技术发展与文化价值。 |
商业模式 | 30%企业采用"模型即服务"订阅制 | AI原生超级应用DAU破5亿 | 降低企业使用AI大模型的门槛,构建灵活易用的“模型即服务”平台,鼓励开发者基于大模型创新,打造用户量巨大的AI原生超级应用,形成用户心智与生态协同。 |
AI原生应用 | 用户心智初步建立,出现少量创新型应用 | 形成规模化效应,垂直领域出现标杆级应用 | 深入理解用户需求,打造杀手级应用,构建围绕AI大模型的开发者生态和用户社区,形成良性循环。 |
投资寒冬与裁员潮下的思考:回归商业本质
当下,AI领域的投资放缓和部分企业的裁员,是市场回归理性的必然结果。早期过度追逐概念和流量,缺乏实际商业价值的企业必然会被市场淘汰。这提醒我们,AI大模型最终还是要回归商业本质,创造可持续的盈利模式。
对于投资者而言,未来的关注点将更加集中在:
- 具有清晰商业模式和盈利能力的企业。
- 能够解决实际问题并创造实际价值的AI产品和服务。
- 在特定垂直领域具有技术壁垒和竞争优势的企业。
- 拥有成熟的团队和执行能力的企业。
对于AI企业而言,生存和发展的关键在于:
- 聚焦客户需求,提供有竞争力的产品和服务。
- 控制成本,提高运营效率。
- 寻找可持续的商业模式和盈利增长点。
- 保持技术创新,不断提升产品和服务的竞争力。
结语:理性前行,拥抱AI的未来
总而言之,AI大模型的热度退却并非寒冬将至,而恰恰是行业从初期狂热走向理性深耕的标志。正如我们所看到的未来三年演进图谱,只有聚焦实际应用,深耕垂直领域,注重可信赖性与商业价值,才能真正拥抱AI带来的长期机遇。无论是企业还是个人,唯有放下浮躁,以务实的姿态拥抱变革,才能在AI驱动的未来中找到自己的位置,共同迎接更加智能化的新时代。
零基础如何学习AI大模型
领取方式在文末
为什么要学习大模型?
学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。
大模型典型应用场景
①AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
②AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
③AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
…
这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。
大模型就业发展前景
根据脉脉发布的《2024年度人才迁徙报告》显示,AI相关岗位的需求在2024年就已经十分强劲,TOP20热招岗位中,有5个与AI相关。
字节、阿里等多个头部公司AI人才紧缺,包括算法工程师、人工智能工程师、推荐算法、大模型算法以及自然语言处理等。
除了上述技术岗外,AI也催生除了一系列高薪非技术类岗位,如AI产品经理、产品主管等,平均月薪也达到了5-6万左右。
AI正在改变各行各业,行动力强的人,早已吃到了第一波红利。
大模型目前在人工智能领域可以说正处于一种“炙手可热”的状态,吸引了很多人的关注和兴趣,也有很多新人小白想要学习入门大模型,那么,如何入门大模型呢?
下面给大家分享一份2025最新版的大模型学习路线,帮助新人小白更系统、更快速的学习大模型!
*有需要完整版学习路线*,可以微信扫描下方二维码
,立即免费领取!
一、2025最新大模型学习路线
一个明确的学习路线可以帮助新人了解从哪里开始,按照什么顺序学习,以及需要掌握哪些知识点。大模型领域涉及的知识点非常广泛,没有明确的学习路线可能会导致新人感到迷茫,不知道应该专注于哪些内容。
我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。
L1级别:AI大模型时代的华丽登场
L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理,关键技术,以及大模型应用场景;通过理论原理结合多个项目实战,从提示工程基础到提示工程进阶,掌握Prompt提示工程。
L2级别:AI大模型RAG应用开发工程
L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。
L3级别:大模型Agent应用架构进阶实践
L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体;同时还可以学习到包括Coze、Dify在内的可视化工具的使用。
L4级别:大模型微调与私有化部署
L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调;并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。
整个大模型学习路线L1主要是对大模型的理论基础、生态以及提示词他的一个学习掌握;而L3 L4更多的是通过项目实战来掌握大模型的应用开发,针对以上大模型的学习路线我们也整理了对应的学习视频教程,和配套的学习资料。
二、大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
三、大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
四、大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
五、大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包
,有需要的小伙伴可以微信扫描下方二维码
,免费领取
****如果这篇文章对你有所帮助,还请花费2秒的时间**点个赞+收藏+分享,**让更多的人看到这篇文章,帮助他们走出误区。