创建 Next 项目
首先,使用 npx create-next-app@latest
根据提示完成 Next 项目的创建:
# 创建 Next 项目
npx create-next-app@latest
创建好项目之后,在 src/app
目录下新建 rag
目录,本次 demo 的代码都将放在这里。
知识库构建
接下来,我们将构建知识库,主要目标是将准备好的 pdf 通过向量化存到向量数据库中,以便后续的检索。
由于本次 RAG 系统的开发都要依赖 LangChain 框架,所以我们先在项目中安装 LangChain 框架和核心依赖:
# LangChain 框架和核心依赖
npm install langchain @langchain/core
文档加载
LangChain 的 DocumentLoaders[1] 提供了种类丰富的文档加载器,可加载文件系统的文件也可以加载线上文件,包括 csv、docx、pdf、pptx、html、github、youtube等等。
现在我们使用 PDFLoader[2] 来实现 pdf 的数据加载。
先安装所需的依赖包:
# @langchain/community:包含第三方集成,这些集成实现了 LangChain Core 中定义的基本接口,如:文档加载、文档嵌入、向量数据库等等
# pdf-parse:读取 pdf 文本
npm install @langchain/community pdf-parse
然后添加加载 pdf 的代码:
import { PDFLoader } from '@langchain/community/document_loaders/fs/pdf';
const loader = new PDFLoader('public/example.pdf', { splitPages: false });
const docs = await loader.load();
文档分割
加载完成后,由于加载的文档可能过长,不适合模型的上下文窗口,需要将文档分割成合适的大小。
LangChain 提供了 TextSplitter[3] 组件来实现文档分割:
import { RecursiveCharacterTextSplitter } from 'langchain/text_splitter';
// chunkSize:分割文档的长度
// chunkOverlap:分割文档间的重叠长度
const textSplitter = new RecursiveCharacterTextSplitter({
chunkSize: 1000,
chunkOverlap: 200,
});
const texts = await textSplitter.splitDocuments(docs);
文档向量嵌入
接下来我们需要对分割后的文本块进行向量嵌入,然后使用 Chroma 向量数据库存储。
向量模型使用 ollama 安装的 nomic-embed-text 模型,可用 ollama run nomic-embed-text
进行下载和运行,完整的代码如下:
import {
Chroma,
ChromaLibArgs,
} from'@langchain/community/vectorstores/chroma';
import { ChatOllama, OllamaEmbeddings } from'@langchain/ollama';
import { EmbeddingsInterface } from'@langchain/core/embeddings';
// 初始化 embeddings 函数
exportfunctioninitOllamaEmbeddings(model = 'nomic-embed-text') {
returnnewOllamaEmbeddings({ model });
}
// 初始化向量数据库
exportfunctioninitChroma(
embeddings: EmbeddingsInterface = initOllamaEmbeddings(),
args: ChromaLibArgs = {
collectionName: 'rag_collection',
url: 'http://localhost:8000',
}
) {
returnnewChroma(embeddings, args);
}
// 初始化向量数据库
const chromadb = initChroma();
// 保存文本块
const documents = await chromadb.addDocuments(texts);
到此就构建好了一个简单的知识库。
RAG 系统构建
在创建好知识库之后,接下来就可以开始构建一个基础的 RAG 系统。该系统包括检索器与生成器两部分,具体工作流程如下:对于用户输入的问题,检索器先搜索与该问题相关的文档,接着将检索到的文档与初始问题一起传递给生成器,即大语言模型,最后将模型生成的答案返回给用户。
检索器创建
我们先基于 VectorStoreRetriever 创建检索器,利用向量相似度进行检索。
// 初始化向量数据库
const chromadb = initChroma();
// 创建检索器
const retriever = chromadb.asRetriever();
生成器创建
接下来我们创建生成器,这里我们使用 Ollama 安装的 deepseek-r1:14b 大模型作为生成器。
import { ChatOllama } from '@langchain/ollama';
export function initOllamaLLM(model = 'deepseek-r1:14b') {
return new ChatOllama({ model });
}
// 创建生成器(初始化大模型)
const ollamaLLM = initOllamaLLM()
然后再设置提示模版:
// 设置提示模版
const prompt = PromptTemplate.fromTemplate(
'你是负责回答问题的助手。使用以下检索到的上下文片段来回答问题。如果你不知道答案,就说你不知道。\n\n上下文:{context}\n\n问题:{question}\n\n回答:'
);
RAG 链生成答案
最后我们通过 RAG 链将检索器和生成器整合在一起,这里可以使用 LangChain 表达式语言(LangChain Execution Language,LCEL)来方便快捷地构建一个链,将检索到的文档、构建的输入 Prompt 以及模型的输出组合起来。
// 使用 LCEL 构建 RAG 链
const ragChain = RunnableSequence.from([
{
context: retriever.pipe((docs) => {
// 文档列表使用 \n\n 拼接为字符串
return docs.map((doc) => doc.pageContent).join('\n\n');
}),
question: newRunnablePassthrough(),
},
prompt,
ollamaLLM,
newStringOutputParser(),
]);
// 使用 RAG 链生成答案
const answer = await ragChain.invoke(question);
项目代码
代码:https://github.com/laixiangran/ai-learn
启动项目之后在浏览器输入 http://localhost:3000/rag
即可访问该 RAG 系统,然后在输入框输入问题:互联网的人才缺口有哪些
也可以通过访问 http://localhost:3000/rag/generate?question=互联网的人才缺口有哪些
通过以上步骤,我们就完成了一个基础 RAG 系统的搭建,其中借助于 LangChain 提供了一系列强大的工具和组件,使得构建和整合检索与生成过程变得简单而高效。而借助 Ollama 我们也能够在本地部署大语言模型和向量模型,这让我们可以以较小的资源进行 AI 的开发学习实践。
普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
0基础如何入门大模型?
大模型目前在人工智能领域可以说正处于一种“炙手可热”的状态,吸引了很多人的关注和兴趣,也有很多新人小白想要学习入门大模型,那么,如何入门大模型呢?
下面给大家分享一份2025最新版的大模型学习路线,帮助新人小白更系统、更快速的学习大模型!
有需要完整版学习路线,可以微信扫描下方二维码
,或点击下方链接免费领取!
**读者福利 |**
👉2024最新《AGI大模型学习资源包》免费分享 **(安全链接,放心点击)**
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈 • 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以点击下方链接免费领取 【保证100%免费】
**读者福利 |**
👉2024最新《AGI大模型学习资源包》免费分享 **(安全链接,放心点击)**