电子技术——BJT差分输入对

电子技术——BJT差分输入对

Logo

本节我们来讨论BJT差分输入对。

共模输入

下图是BJT差分输入对的基本原理图:

BJT差分输入对
首先我们考虑两端输入共模信号 V C M V_{CM} VCM

共模信号
此时 v B 1 = v B 2 = V C M v_{B1} = v_{B2} = V_{CM} vB1=vB2=VCM 因为电路的对称结构,所以 i E 1 = i E 2 = I / 2 i_{E1} = i_{E2} = I/2 iE1=iE2=I/2 ,发射极电压为 V C M − V B E V_{CM} - V_{BE} VCMVBE 这里 V B E V_{BE} VBE 是满足电流 i E 1 = i E 2 = I / 2 i_{E1} = i_{E2} = I/2 iE1=iE2=I/2 的基极电压(大约在0.7V)。输出的集电极电压为:

v o = V C C − α I 2 R C v_o = V_{CC} - \frac{\alpha I}{2}R_C vo=VCC2αIRC

输出端两端电压相同,差值为零。这说明BJT差分输入对同样对共模信号无响应。

对于BJT差分输入对的共模信号输入范围,存在上限,当 Q 1 Q_1 Q1 Q 2 Q_2 Q2 处于饱和区边界的时候,此时:

V C M m a x ≃ V C + 0.4 = V C C − α I 2 R C + 0.4 V_{CMmax} \simeq V_C + 0.4 = V_{CC} - \frac{\alpha I}{2}R_C + 0.4 VCMmaxVC+0.4=VCC2αIRC+0.4

存在下限,使得电流源 I I I 有最小的压降 V C S V_{CS} VCS

V C M m i n = − V E E + V C S + V B E V_{CMmin} = -V_{EE} + V_{CS} + V_{BE} VCMmin=VEE+VCS+VBE

大信号模型

根据BJT的电压电流传导关系,我们知道:

i E 1 = I S α e v B 1 − v E / V T i_{E1} = \frac{I_S}{\alpha} e^{v_{B1} - v_{E}/V_T} iE1=αISevB1vE/VT

i E 2 = I S α e v B 2 − v E / V T i_{E2} = \frac{I_S}{\alpha} e^{v_{B2} - v_{E}/V_T} iE2=αISevB2vE/VT

做除法得到:

i E 1 i E 2 = e ( v B 1 − v B 2 ) / V T \frac{i_{E1}}{i_{E2}} = e^{(v_{B1} - v_{B2})/V_T} iE2iE1=e(vB1vB2)/VT

以及我们有 i E 1 + i E 2 = I i_{E1} + i_{E2} = I iE1+iE2=I ,解得:

i E 1 = I 1 + e − v i d / V T i_{E1} = \frac{I}{1 + e^{-v_{id}/V_T}} iE1=1+evid/VTI

i E 2 = I 1 + e v i d / V T i_{E2} = \frac{I}{1 + e^{v_{id}/V_T}} iE2=1+evid/VTI

这里 v i d = v B 1 − v B 2 v_{id} = v_{B1} - v_{B2} vid=vB1vB2 ,集电极电流等于发射极电流的 α \alpha α 倍,非常接近单位一。

下图展示了归一化之后的差分响应的图形表示:

差分响应
我们发现,当 v i d = 4 V T v_{id} = 4V_T vid=4VT (100mV)的时候,就会出现一个BJT截止另一个BJT完全导通的的情况,这比MOS的边界 2 V O V \sqrt{2}V_{OV} 2 VOV 要小。实际上,BJT具有从一边切换到另一边更快的速度。

若获得较好的线性区域,必须让输入的差分信号小于 V T / 2 V_T/2 VT/2 。最后,我们介绍一种扩宽BJT线性区域的方法,我们使用发射极电阻,如图所示:

发射极电阻

我们之前在BJT章节学习过,引入BJT的发射极电阻之后,由于发射极电阻的分压作用,可以扩大我们信号的幅值范围,进而扩宽BJT线性区域,结果可以参考下图:

扩宽BJT线性区域
但是代价是降低了增益系数。这种方法对于MOS差分输入对同样有效。

小信号模型

下图展示了我们小信号模型的原始电路图:

原始电路图
差分信号输入 v i d v_{id} vid 通过互补输入到BJT差分输入对。此时集电极的信号电流为:

i c 1 = α I 1 + e − v i d / V T i_{c1} = \frac{\alpha I}{1 + e^{-v_{id}/V_T}} ic1=1+evid/VTαI

i c 2 = α I 1 + e v i d / V T i_{c2} = \frac{\alpha I}{1 + e^{v_{id}/V_T}} ic2=1+evid/VTαI

i c 1 i_{c1} ic1 的分子分母同时乘以 e v i d / 2 V T e^{v_{id}/2V_T} evid/2VT

i c 1 = α I e v i d / 2 V T e v i d / 2 V T + e − v i d 2 / V T i_{c1} = \frac{\alpha I e^{v_{id}/2V_T}}{e^{v_{id}/2V_T} + e^{-v_{id}2/V_T}} ic1=evid/2VT+evid2/VTαIevid/2VT

假设 v i d ≪ 2 V T v_{id} \ll 2V_T vid2VT ,我们 e x e^x ex 展开只保留前两项:

i c 1 ≃ α I ( 1 + v i d / 2 V T ) 1 + v i d / 2 V T + 1 − v i d / 2 V T = α I 2 + α I 2 V T v i d 2 i_{c1} \simeq \frac{\alpha I(1+v_{id}/2V_T)}{1+v_{id}/2V_T + 1-v_{id}/2V_T} = \frac{\alpha I}{2} + \frac{\alpha I}{2V_T}\frac{v_{id}}{2} ic11+vid/2VT+1vid/2VTαI(1+vid/2VT)=2αI+2VTαI2vid

同理:

i c 1 ≃ α I 2 − α I 2 V T v i d 2 i_{c1} \simeq \frac{\alpha I}{2} - \frac{\alpha I}{2V_T}\frac{v_{id}}{2} ic12αI2VTαI2vid

所以BJT差分输入对的差分电流为:

i c = α I 2 V T v i d 2 i_c = \frac{\alpha I}{2V_T}\frac{v_{id}}{2} ic=2VTαI2vid

这表明,当应用差分信号输入 v i d v_{id} vid 的时候, i c 1 i_{c1} ic1 会增加 i c i_c ic i c 2 i_{c2} ic2 会降低 i c i_c ic 但保持总量不变一直为 I I I

另外一种解释为,BJT的互导系数为:

g m = I C V T = α I / 2 V T g_m = \frac{I_C}{V_T} = \frac{\alpha I/2}{V_T} gm=VTIC=VTαI/2

对于每一个BJT的输入信号电压都是 v i d 2 \frac{v_{id}}{2} 2vid ,故写作是:

i c = g m v i d 2 i_c = g_m \frac{v_{id}}{2} ic=gm2vid

同样我们可以使用T模型解释:

T模型
根据基尔霍夫定律,电压 v i d v_{id} vid 作用在 2 r e 2r_e 2re 的总电阻中,此时:

i e = v i d 2 r e i_e = \frac{v_{id}}{2 r_e} ie=2revid

则此时的集电极电流为:

i c = α v i d 2 r e = g m v i d 2 i_c = \alpha \frac{v_{id}}{2 r_e} = g_m \frac{v_{id}}{2} ic=α2revid=gm2vid

同样的分析方法适用于分析带发射极电阻的情况,如图:

发射极电阻
此时:

i e = v i d 2 r e + 2 R e i_e = \frac{v_{id}}{2r_e + 2R_e} ie=2re+2Revid

BJT不像MOS存在无穷大阻抗,现在让我们来计算BJT差分输入对的输入阻抗,我们知道两个输入端的基极电流相等,且都为:

i b = i e β + 1 = v i d / 2 r e β + 1 i_b = \frac{i_e}{\beta + 1} = \frac{v_{id}/2r_e}{\beta + 1} ib=β+1ie=β+1vid/2re

因此输入阻抗为:

R i d ≡ v i d i b = ( β + 1 ) 2 r e = 2 r π R_{id} \equiv \frac{v_{id}}{i_b} = (\beta + 1)2r_e = 2r_\pi Ridibvid=(β+1)2re=2rπ

这同样遵循电阻反射定律,即从两个基极看过去的电阻等于发射极电阻的 β + 1 \beta + 1 β+1 倍。所以带发射极电阻的输入阻抗为:

R i d = 2 ( β + 1 ) ( r e + R e ) R_{id} = 2(\beta + 1)(r_e + R_e) Rid=2(β+1)(re+Re)

接下来考虑电压增益,我们知道输出端的电压为:

v C 1 = ( V C C − I C R C ) − g m R C v i d 2 v_{C1} = (V_{CC} - I_CR_C) - g_mR_C\frac{v_{id}}{2} vC1=(VCCICRC)gmRC2vid

v C 2 = ( V C C − I C R C ) + g m R C v i d 2 v_{C2} = (V_{CC} - I_CR_C) + g_mR_C\frac{v_{id}}{2} vC2=(VCCICRC)+gmRC2vid

这里 g m g_m gm 是BJT偏置在电流为 I C I_C IC 处的互导系数,且 I C I_C IC 为:

I C = α I 2 I_C = \frac{\alpha I}{2} IC=2αI

当使用差分输出的时候,此时电压增益为:

A d = v o d v i d = g m R C A_d = \frac{v_{od}}{v_{id}} = g_mR_C Ad=vidvod=gmRC

当使用发射极电阻的时候,电压增益为:

A d = α ( 2 R C ) 2 r e + 2 R e ≃ R C r e + R e A_d = \frac{\alpha (2R_C)}{2r_e + 2R_e} \simeq \frac{R_C}{r_e + R_e} Ad=2re+2Reα(2RC)re+ReRC

这同样满足电压增益为集电极总电阻比上发射极总电阻。

下图展示了一个不同的BJT差分输入对:

BJT差分输入对
图中我们使用的互补输入方式,而且我们使用共发射极电阻 R E E R_{EE} REE 来代替偏置的恒流源,因为电路总是对称的,所以共发射极节点处的电压总是是为零,因此上面的电路等效于下面的半电路:

半电路
虽然 R E E R_{EE} REE 的阻抗是有限的,但是这并不影响信号分析中,BJT的发射极永远是虚拟AC地,因此 R E E R_{EE} REE 的有限阻抗不影响BJT差分输入对。

有时候,并不总是使用互补输入方式,另一种可能的输入方式是一端接地,一端输入,如图:

单端输入
此时发射极电压不再是零,电阻 R E E R_{EE} REE 对信号存在影响。若假设 R E E ≫ r e R_{EE} \gg r_e REEre 则可以近似的看成是 v e = v i d / 2 v_e = v_{id} / 2 ve=vid/2 ,此时整个电路等价于互补输入方式,半电路分析仍可以使用,如上图。

互补输入方式中,两个半电路完全一致,因此只需要分析电路的一半即可,这种方法称为 差分半电路 。我们将其中一个半电路使用混合 π \pi π 模型:

混合pi模型
分析方法和我们之前分析共发射极电路分析方法一致,此时偏置电流为 I / 2 I/2 I/2 。若考虑 r o r_o ro 的影响,我们有:

A d = g m ( R C ∣ ∣ r o ) A_d = g_m(R_C || r_o) Ad=gm(RC∣∣ro)

BJT差分输入对的输入阻抗是半电路输入阻抗的两倍。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值