- 什么是德尔菲法?
德尔菲法是一种用于预测和决策的结构化通信方法,涉及专家小组。该过程包括多轮问卷,专家提供匿名回答。这些回复被汇总并与小组共享,允许根据集体意见进行调整以达成共识。从选择专家开始,该方法通过多轮评论进行,直到达成共识。虽然它提供了一些优势,例如无需面对面会议即可汇总不同的意见和确保匿名,但它可能缺乏现场讨论的深度,并面临诸如可能退出和与大多数人保持一致的风险等挑战。

编辑
极客外卖:
- Delphi 方法是一种结构化的通信方法,用于涉及专家小组的预测和决策。
- 它由 Norman Dalkey 和 Olaf Helmer 于 1950 年代开发,采用多轮问卷进行匿名专家回答。
- Delphi 方法具有便利性、灵活性和定性信息集成等优势。
- 缺点包括口译对响应者专业知识的依赖、有限的公开讨论以及多轮所需的承诺。
目录
- 德尔菲法是做什么用的?
- Delphi 方法的特点
- Delphi 方法工艺
- Delphi 方法的实际应用
- 德尔菲法是如何进行的?
- 德尔菲法的优点
- 德尔菲法的缺点
- Delphi 方法与其他研究方法的区别
- Delphi 方法 - 常见问题解答
- 德尔菲法是做什么用的?
德尔菲方法最初是为冷战期间的军事战略而设计的,是一种基于调查的方法,用于预测未来事件。它鼓励不同的意见,不受地域限制,旨在在一组专家之间建立共识。在多轮问卷中,专家提供匿名回答,然后汇总和共享。此过程允许专家根据小组反馈调整他们的答案,从而促进达成共识。Delphi 方法广泛应用于医疗保健、国防、商业预测和研究等各个领域,有助于达成专家协议、制定专业指南以及跨不同部门进行研究。
- Delphi 方法的特点
1. Delphi 方法中的匿名性:Delphi 方法优先考虑匿名性,使专家能够自由表达自己的意见,而不必担心判断或偏见。通过保持匿名,该方法旨在消除个人偏见和权力动态,促进诚实和独立的反馈。此功能可防止主导人物掩盖专家小组中的不同观点。
2. 迭代和受控反馈:Delphi 方法包含多轮问卷,每轮问卷都基于上一轮收到的反馈。专家可以查看小组回复并根据此受控反馈调整他们的观点。通过迭代循环,专家们可以改进他们的回答,澄清不确定性,并达成共识。此过程增强了专家组达成的最终共识的可靠性和有效性。
3. 统计聚合:Delphi 方法专家的回答是使用中位数、平均值或四分位数范围等统计技术进行汇总的。这量化了专家意见之间的共识或分歧水平。统计聚合提供了一种结构化的方法来综合不同的观点,有助于确定专家小组内一致和不一致的领域。
4. 专家小组的异质性:Delphi 方法强调了来自不同背景、学科或专业领域的多元化和代表性专家小组的重要性。这种异质性确保了全面的观点、专业知识和经验,并在建立共识的过程中得到考虑。多元化专家的加入丰富了通过 Delphi 方法生成的见解的质量,并减轻了潜在的偏见。
- Delphi 方法工艺
1. 问题识别:通过生成具体问题和不确定性来明确定义业务问题或潜在的行业影响。在查询中精确增强专家预测。确定受问题影响的关键利益相关者,考虑他们的观点,以便全面定义问题。
2. 专家的选择: 战略性地选择一组不同的专家,他们代表与所研究主题相关的不同观点和专业知识。确保选定的专家在特定领域拥有良好的业绩记录,并拥有经验和创新之间的平衡组合。
3. 问卷分发:向专家分发问卷,并附有根据个人经验、知识或研究分享意见、见解或预测的说明。传达问卷的目的,强调他们对建立共识过程的贡献的重要性。
4. 第一轮问卷:提出最初的开放式问卷,收集匿名回答。分发总结报告以鼓励自由陈述意见。包括一个机制,让专家寻求澄清或提供额外的背景信息,从而促进对他们的回答有更全面的理解。
5. 第二轮问卷:在第一轮的基础上,制作第二份问卷,分析初步回答,并专注于专家之间达成共识的领域。分发第二个摘要报告。鼓励专家强调他们观点的任何变化,并提供有关影响这些调整的因素的见解。
6. 第三轮问卷:与第二轮类似,通过分析第二轮的回答来设计第三轮问卷。专家根据第二轮总结报告做出回应。促进专家之间的协作讨论,鼓励交换观点以进一步完善意见。
7. 分析和修改:收集和分析专家反馈,确定共性和分歧。单独重新访问专家,提供总结报告,并允许他们修改自己的观点。在记录修改之后,组织一次虚拟或面对面的会议,讨论集体见解,促进对不同观点的共同理解。
8. 共识调查:针对新问题调整问卷,并根据需要重复第 4 步到第 6 步。通过多轮寻找趋同的意见,以期在专家之间达成共识。营造建设性辩论的氛围,确保专家能够自如地表达不同意见,以丰富审议过程。
9. 准备最终报告:收集回复和见解以创建全面的摘要报告。将调查结果用作最终预测的基础,帮助制定业务决策。包括执行摘要,突出关键见解,并根据达成的共识概述可行建议。
- Delphi 方法的实际应用
1. 业务预测:在业务预测中,Delphi 方法促进了专家小组之间的集体决策,利用他们的见解来预测趋势、识别机会并做出明智的业务决策。
2. 医疗保健:在医疗保健领域,德尔菲方法在就公共卫生战略、研究重点、临床实践和政策制定等问题达成专家共识方面发挥着至关重要的作用。它有助于制定专业指南并加强医疗保健领域的决策过程。
3. 研究和政策制定:研究人员和政策制定者利用德尔菲方法从各种利益相关者和专家那里收集见解。事实证明,这种方法在征求专家意见、引导复杂的决策以及为研究和政策制定具有成本效益的策略方面很有价值。
4. 技术评估和预测:Delphi 方法在技术评估和预测中得到应用,有助于预测跨行业的新兴技术影响。它有助于识别技术趋势、评估潜在风险和指导战略规划过程以实现有效适应。
5. 战略规划:组织在战略规划练习中利用德尔菲方法,利用专家意见来评估未来情景、市场趋势和竞争格局。这种方法支持根据专家的集体见解制定长期战略。
6. 政策制定:德尔菲技术集成到公共政策制定过程中,作为评估不同情景的工具。它帮助政策制定者评估政策选择的可取性、可行性和可能性,使他们能够根据专家意见和对利弊的透彻理解做出明智的决策。
- 德尔菲法是如何进行的?
主持人通过仔细选择一组与主题相关的专家来启动 Delphi 方法。入选的专家会收到一份调查问卷,提示他们分享他们对各种主题的个人观点、经验或见解。收集到回复后,主持人会对其进行编译并将其分发给所有参与者,从而提供额外的评论机会。反馈会议结束后,主持人收集问卷,决定是否需要再进行一轮调查,或者结果是否已准备好发布。这个迭代过程一直持续到达成广泛共识,确保对专家小组的不同观点和意见进行彻底探索。
- 什么是 Delphi 方法中的共识?
当专家小组的意见主要一致或趋同于一个共同的观点时,就会在德尔菲方法中达成共识。不需要完全一致的意见;相反,只要绝大多数专家意见朝着同一个方向前进,表明有共同的观点和共同的共识,共识就已经建立起来。这种集体协议反映了不同见解的顶峰,确保了对主题的全面理解。德尔菲法允许灵活的迭代方法,容纳多轮以完善意见并提高共识的可靠性。
- 德尔菲法的优点
1. 灵活性:对于在历史数据有限的情况下适应新技术或新兴趋势的企业主来说,Delphi 预测方法被证明是无价的。与依赖于现有统计数据的定量方法不同,这种方法允许在数据稀缺的情况下做出明智的决策。此外,它的适应性允许根据新信息的出现进行调整,确保与不断变化的情况持续相关。
2. 方便:方便是 Delphi 方法的标志,因为调查是远程分发和填写的。参与者可以灵活地在方便时完成调查。这种远程方法简化了流程,使所有相关人员都可以访问和高效。易于参与增强了专家之间的参与和协作。
3. 定性信息:虽然定量调查擅长广泛的市场数据,但即使在没有先验信息的情况下,Delphi 方法也很繁荣。利用专家的经验知识,它捕捉细微的见解,提供定量和定性数据的混合。这种组合增强了理解的深度,尤其是在处理新趋势或发展时。该方法提供了主题的更全面视图。
4. 匿名:Delphi 方法中的完全匿名促进了参与专家的坦率。摆脱了小组讨论的束缚,专家可以公开表达自己的观点。这种匿名性确保了第一轮预测不受群体思维的影响,从而产生更真实和公正的见解。该方法的机密性使专家能够毫无保留地分享他们的观点。
5. 平衡:Delphi 方法涉及来自不同领域的专家小组,确保从电子商务到医疗保健的平衡视角。这种经验和观点的多样性丰富了决策过程,为企业提供了对问题的全面理解,并增强了他们预测结果和达成平衡共识的能力。这种包容性通过整体视角促进了稳健的决策。
- 德尔菲法的缺点
1. 解释取决于响应者的专业知识:Delphi 方法用于不存在绝对答案的情况,强调专家意见的价值。研究结果的解释在很大程度上取决于响应者的专业知识。响应方组的资格在提供有价值的见解方面变得至关重要。如果对响应者的经验和专业知识没有信心,就很难得出明确的结论或建议。这一挑战可以通过细致的研究设计和有效的流程管理来缓解。Delphi 研究的成功取决于组建合格的响应者群体,以确保有意义和可靠的数据解释。
2. 有限的公开讨论:在 Delphi 技术中,采用受控反馈,限制参与者(问卷回答者)之间的公开讨论。前面讨论过的这个限制阻止了可能与其他研究方法不一致的复杂讨论。为了解决这个问题,一个小型专家指导小组被纳入研究设计中。然而,在处理需要更深入调查的高度两极化的观点时,这种受控方法可能不太有效。
3. 需要多轮承诺:参与德尔菲方法,尤其是涉及多轮时,需要参与者的承诺。回答几轮问卷(可能包括重复查询)是一项实际挑战。脱离或无响应会影响结果的大小和质量。精心设计的 Delphi 研究应积极考虑并解决这一承诺挑战,以确保可靠的结果。确保参与者的参与度并管理多轮研究期间的潜在疲劳对于德尔福研究的成功至关重要。
- Delphi 方法与其他研究方法的区别
基础 | Delphi 方法 | 其他研究方法 |
匿名和受控反馈 | 在 Delphi Method 中,专家提供匿名反馈,培养公正的意见并防止主导影响。 | 其他方法可能不会在相同程度上结合匿名和受控反馈,这可能会引入偏见和群体动态。 |
迭代过程 | Delphi 方法涉及问卷的迭代轮次,允许专家根据小组反馈修改答案。 | 传统的研究方法可能不包括迭代过程,这可能会阻止互动和共识建立的深度。 |
统计聚合 | Delphi 利用统计聚合系统地量化专家意见。这种结构化方法与一些可能不强调统计聚合的研究方法不同,导致对专家意见的分析不太系统。 | 传统方法可能不优先考虑统计聚合,这可能会导致不同观点的综合不那么有序。 |
专家小组中的异质性 | 德尔菲方法强调多元化的专家小组以获得全面的视角。 | 一些研究方法可能不优先考虑异质性,这可能会限制在建立共识期间考虑的观点的广度。 |
- Delphi 方法 - 常见问题解答
- 谁开发了德尔菲法?
德尔菲方法由兰德公司的 Norman Dalkey 和 Olaf Helmer 在 1950 年代创建,用于解决特定的军事挑战。
- Delphi 方法有哪些类型?
德尔菲方法和调查有三种类型:政策用于制定策略; Classical 用于预测未来趋势;而 Decision-Making 则有助于更好的决策过程。
- 您能举一个德尔菲技术的例子吗?
德尔菲法是一个预测过程,专家填写问卷,提供他们的意见。然后,发起者或促进者将这些观点汇编并总结成一份连贯的报告,旨在达成小组共识。
- Delphi 研究涉及多少名专家?
至少 12 名受访者应被认为足以在 Delphi 练习中达成共识。虽然可以使用更大的样本量,但它们可能会产生关于结果有效性的递减回报。
- 德尔菲法的结构是什么?
德尔菲方法,俗称估计-谈-估计 (ETE),是一种为系统和交互式预测而开发的结构化通信技术。它依靠专家小组以结构化的方式提供见解和意见。