
计算机图形学中的插值方法
文章平均质量分 71
插值是一种在离散的已知数据点集范围内构建新数据点的方法。通过采样或实验获得的数据点数表示有限数量的自变量值的函数值。
Interpolation 的主要任务是为已知曲线找到合适的数学表达式。当我们必须通过确定已知采样点之间的中间点来绘制曲线时,会使用这种技术。
算法资料吧!
算法资料
展开
-
K 最近邻 (KNN) 算法
对于回归任务,该算法计算 K 个最近邻的值 y 的平均值或加权平均值,并将其分配为 x 的预测值。然后,数据点的类或值由 K 个邻居的多数票或平均值确定。– 根据 KNN 算法的工作原理,它将所有数据存储在内存存储中,因此每当添加新示例或数据点时,算法都会根据该新示例进行自我调整,并对未来的预测做出贡献。K 最近邻 (KNN) 算法根据相似性原理运行,它通过考虑训练数据集中 K 个最近邻的标签或值来预测新数据点的标签或值。在回归问题中,类标签是通过取 K 个最近邻的目标值的平均值来计算的。原创 2024-10-22 09:48:31 · 1028 阅读 · 0 评论 -
加权 K-NN
如果我们将上述数据集提供给基于 kNN 的分类器,则分类器将声明查询点属于类 0。在加权 kNN 中,使用称为核函数的函数为最近的 k 个点指定权重。加权 kNN 背后的直觉是给附近的点更多的权重,给较远的点更少的权重。任何函数都可以用作加权 knn 分类器的核函数,其值随着距离的增加而减小。如果 k 太大,则邻域可能包含来自其他类的太多点。最简单的方法是进行多数投票,但如果最近邻的距离相差很大,并且最近的邻更可靠地指示对象的类,则这可能是一个问题。考虑 0 作为类 0 的标签,1 作为类 1 的标签。原创 2024-10-23 08:15:00 · 461 阅读 · 0 评论