
python算法
算法资料吧!
算法资料
展开
-
Python自动化专家使用Pytest-Playwright
通过实践课程和实际示例,您将学习如何自动执行Web应用程序以进行功能测试,有效地调试问题,并优化测试执行以获得最大效率。从自动化原理和工具的介绍开始,您将逐步设置环境,学习Pytest用于测试创建和执行的基础知识,并利用Playwright强大的浏览器自动化功能。您还将探索高级主题,如并行测试执行、调试策略、持续集成(CI/CD)管道以及维护可扩展测试套件的最佳实践。在课程结束时,您将有能力自信地应对自动化挑战,编写可维护的测试脚本,并将您的测试集成到现代开发工作流程中。过渡到浏览器自动化框架的专业人士。原创 2025-04-09 08:44:39 · 186 阅读 · 0 评论 -
python连接线程案例
【代码】python连接线程案例。原创 2024-03-10 10:02:26 · 302 阅读 · 1 评论 -
创建您的第一个线程代码
【代码】创建您的第一个线程代码。原创 2024-03-10 10:00:57 · 154 阅读 · 1 评论 -
遗传算法 (Genetic Algorithm)
海上风电叶片设计优化,对风力机捕风能力和项目收益意义重大。文章利用两种典型的多目标优化算法(粒子群优化算法和遗传优化算法)对某款在役叶片进行气动优化。结果表明:两种多目标算法都可以很好地完成叶片气动外形优化任务。与采用经验方法设计的叶片相比,经多目标算法优化的叶片具有更高气动效率和更低的气动载荷。从收敛性、优化效率等方面对比分析了2种优化算法的优劣势,研究成果可为叶片气动外形优化提供一定参考。基于多岛遗传算法的垂直轴风机翼型优化设计。粒子群优化算法和遗传优化算法。原创 2023-06-18 11:15:54 · 170 阅读 · 2 评论 -
人工蜂群算法python案例
5. 观察蜜蜂搜索:对于每一只普通蜜蜂,选择一个随机的精英蜜蜂,并在其搜索邻域中随机选择一个位置,计算该位置的适应度值,如果比当前位置更优,则更新位置和状态。6. 跟随蜜蜂搜索:对于每一只跟随蜜蜂,选择另外两只随机的蜜蜂,并在其搜索邻域中随机选择一个位置,计算该位置的适应度值,如果比当前位置更优,则更新位置和状态。4. 精英蜜蜂搜索:对于每一只精英蜜蜂,利用搜索邻域内的普通蜜蜂来更新位置和状态,如果新的位置得到了更好的适应度值,就更新当前的最优位置。原创 2023-06-18 10:51:52 · 605 阅读 · 4 评论