
机器学习
文章平均质量分 86
机器学习
算法资料吧!
算法资料
展开
-
在 Scikit Learn 中使用高斯过程分类 (GPC) 进行概率预测
高斯过程分类 (GPC) 是一种用于分类任务的概率模型。它基于使用高斯过程对分类问题的输入特征和目标标签之间的关系进行建模的想法。GPC 利用贝叶斯推理进行预测,这意味着它不仅可以输出最可能的输入类标签,还可以输出预测不确定性的度量。GPC 将输入特征和目标标签之间的关系建模为高斯过程,这是高斯分布对函数的泛化。给定一组输入特征,GPC 模型估计可能的目标标签的后验分布。然后,此分布可用于进行概率预测,即,不仅可以预测给定输入的最可能的类标签,还可以预测预测的不确定性。原创 2024-10-23 19:46:52 · 830 阅读 · 0 评论 -
LSTM 网络
随着 LSTM 的日益普及,人们已经尝试了对传统 LSTM 架构进行各种更改,以简化单元的内部设计,使它们以更高效的方式工作并降低计算复杂性。首先,使用 sigmoid 函数对信息进行调节,并使用输入 h_t-1 和 x_t 过滤要记住的值,类似于遗忘门。然后,使用 tanh 函数创建一个向量,该函数给出从 -1 到 +1 的输出,其中包含从 h_t-1 到 x_t 的所有可能值。另一方面,在计算新的候选激活时,GRU 控制来自前一个激活的信息流,但不独立控制添加的候选激活的数量(控制权通过更新门绑定)。原创 2024-10-22 19:00:00 · 1110 阅读 · 0 评论 -
使用 K-means 聚类进行图像压缩
在彩色图像中,每个像素由 3 个字节组成,其中包含 RGB(红-蓝-绿)值,每个像素具有红色强度值,然后是蓝色,然后是绿色强度值。生成的图像将具有较少的颜色,从而减小文件大小,但仍保留图像的整体外观。将 K-means 聚类分析应用于拼合的图像数组,其中 K 表示压缩图像中所需的颜色数。现在,通过调整 K 的值,即用于压缩的簇数,可以控制压缩级别。将原始图像中的每个像素替换为其分配的群集的平均 RGB 值。首先,我们将导入此图像所需的库,然后我们将上面的图像下载到本地系统,并将其上传到笔记本并使用。原创 2024-10-22 05:00:00 · 977 阅读 · 0 评论 -
人工神经网络(Artificial Neural Networks,简称ANNs)-1
。原创 2024-10-13 10:28:01 · 224 阅读 · 0 评论 -
机器学习中的优化算法-1-梯度下降及其变体
该算法的工作原理是在当前点的函数梯度 (或近似梯度) 的相反方向上采取重复步骤,因为这是最陡下降的方向。换句话说,优化可以定义为获得给定函数的最佳值或最小值的一种方式。在大多数问题中,目标函数 f(x) 是受约束的,目的是确定最小化或最大化 f(x) 的?优化算法是机器学习模型的支柱,因为它们使建模过程能够从给定的数据集中学习。这些算法用于查找目标函数的最小值或最大值,该函数在机器学习上下文中代表误差或损失。在本文中,讨论了不同的优化方法以及它们在机器学习中的用途及其意义。机器学习中的优化算法。原创 2024-10-16 18:54:27 · 525 阅读 · 0 评论 -
机器学习中的优化算法
Optimization Algorithms in Machine Learning,机器学习中的优化算法。优化算法是机器学习模型的支柱,因为它们使建模过程能够从给定的数据集中学习。这些算法用于查找目标函数的最小值或最大值,该函数在机器学习上下文中代表误差或损失。在本文中,讨论了不同的优化方法以及它们在机器学习中的用途及其意义。目录优化是从各种可用的可行解决方案中选择最佳解决方案的过程。换句话说,优化可以定义为获得给定函数的最佳值或最小值的一种方式。在大多数问题中,目标函数 f(x) 是受约束的,目的是确原创 2024-10-17 09:29:38 · 1510 阅读 · 0 评论 -
卷积神经网络(CNN)-Padding介绍
卷积神经网络(CNN)-Padding介绍原创 2024-10-13 18:13:59 · 1402 阅读 · 0 评论 -
使用 Logistic Regression 识别手写数字-PyTorch
现在,我们将了解如何在 PyTorch 中实现这一点,PyTorch 是由 Facebook 开发的一个非常流行的深度学习库。假设您正确执行了所有步骤,您将获得 82% 的准确率,这与当今使用特殊类型的神经网络架构的最先进的模型相去甚远。在这里,我们将使用交叉熵损失,对于优化器,我们将使用学习率为 0.001 的随机梯度下降算法,如上面的超参数中所定义。在我们编写的代码中,softmax 是在每次前向传递期间在内部计算的,因此我们不需要在 forward() 函数中指定它。现在,我们将定义我们的超参数。原创 2024-10-18 18:22:01 · 865 阅读 · 0 评论 -
机器学习中的优化算法-2-随机优化技术
这些算法使用 crossover 和 mutation 运算符来进化种群。通常用于通过依赖生物启发的运算符(如 mutation、crossover 和 selection)为优化和搜索问题生成高质量的解决方案。进化算法受到自然选择的启发,包括遗传算法和差分进化等技术。它们通常用于解决使用传统方法难以或无法解决的复杂优化问题。随机优化技术将随机性引入搜索过程,这对于解决传统方法可能难以解决的复杂非凸优化问题可能有利。原创 2024-10-16 18:56:43 · 602 阅读 · 0 评论 -
人工神经网络(Artificial Neural Networks,简称ANNs)-2
这段内容是关于人工神经网络(Artificial Neural Networks,简称ANN)的介绍,特别是涉及到混合系统(Hybrid Systems)的部分。这种不同技术的结合使得混合系统具有更广泛的能力范围,能够在不确定和不精确的环境中进行推理和学习,提供类似人类的专业知识,例如领域知识、在嘈杂环境中的适应性等。神经遗传混合系统是一种结合了神经网络和遗传算法的系统,神经网络能够从示例中学习各种任务,对对象进行分类并建立它们之间的关系,遗传算法则服务于重要的搜索和优化技术。原创 2024-10-13 10:52:57 · 637 阅读 · 0 评论 -
卷积神经网络(Convolutional Neural Network)案例
CNN原创 2024-10-16 18:43:05 · 981 阅读 · 0 评论 -
人工神经网络(Artificial Neural Networks,简称ANNs)-python训练案例
这些神经元通过突触连接在一起,突触只不过是一个神经元可以向另一个神经元发送冲动的连接。当一个神经元向另一个神经元发送兴奋性信号时,该信号将被添加到该神经元的所有其他输入中。如果它超过给定的阈值,那么它将导致目标神经元向前发射动作信号——这就是思考过程内部的工作方式。为简单起见,我们只对一个简单的 NN 进行建模,其中两层能够解决线性分类问题。通过学习过程,ANN被配置用于特定应用,例如模式识别或数据分类。请注意,输出与第三列直接相关,即输入3的值是图2中每个训练示例中的输出。重复整个过程进行几千次迭代。原创 2024-10-13 11:47:21 · 478 阅读 · 0 评论 -
机器学习-RBF
在本文中,我们深入探讨了RBF内核的复杂性,探讨了它的数学公式、直观理解、实际应用及其在各种机器学习算法中的重要性。如果我们在RBF内核上应用任何算法,如感知器算法或线性回归,实际上我们会将我们的算法应用于我们创建的新无限维数据点。因此,它将给出一个无限维的超平面,在返回到我们的原始维度后,这将给出一个非常强的非线性分类器或回归曲线。,并且正如我们所知,它的扩展ex给出一个无限幂的多项式方程,因此使用这个内核,我们使回归/分类线也变得无限强大。包含无限项到x的无限幂,因此它涉及无限维度中到无限幂的项。原创 2024-10-18 18:30:20 · 945 阅读 · 0 评论 -
机器学习的优缺点
它的优势,例如自动化、增强的决策、个性化、可扩展性和提高的安全性,使其成为现代企业的宝贵工具。这并不是什么新概念。当模型对训练数据学习得太好时,就会发生过拟合,从而捕获噪声和异常,这会降低其对新数据的泛化能力。当模型过于简单而无法捕获数据中的基础模式时,就会发生欠拟合,从而导致训练和测试数据的性能不佳。训练数据中的偏差会导致模型有偏差,从而使现有的不平等和对某些群体的不公平待遇永久化。在制造和客户服务等行业,ML 驱动的自动化可以处理质量控制、数据输入和客户查询等日常任务,从而提高生产力和效率。原创 2024-10-19 11:04:31 · 1324 阅读 · 0 评论 -
卷积层(convolution layer)中的填充类型
Same Padding:在相同的padding中,将padding添加到输入特征图中,使得输出特征图的大小与输入特征图的大小相同。通常,当我们想保留特征图的空间维度时,首选相同的填充,而当我们想要减少特征图的空间维度时,首选有效的填充。Valid Padding:在有效填充中,没有向输入特征图添加填充,并且输出特征图小于输入特征图。最常见的填充值是零填充,它涉及向输入特征图的边界添加零。总体而言,填充是卷积神经网络中的一项重要技术,有助于保留特征图的空间维度,并可以提高模型的性能。Python3 语言。原创 2024-10-14 18:07:31 · 680 阅读 · 0 评论 -
人工神经网络(Artificial Neural Networks,简称ANNs)-4
上述网络是具有反馈连接的单层网络,其中处理元件的输出可以被引导回其自身或另一个处理元件,或两者兼而有之。在这种类型的网络中,处理单元的输出可以指向同一层和前一层的处理单元,形成一个多层循环网络。它们对序列的每个元素执行相同的任务,输出取决于之前的计算。递归神经网络的主要特征是它的隐藏状态,它捕获了关于序列的一些信息。一个或多个隐藏层的存在使网络在计算上更强大,由于信息流通过输入函数,网络成为前馈网络,中间计算用于确定输出Z。上图显示了一个具有单个神经元的循环网络,该神经元对其自身有反馈。原创 2024-10-13 10:57:19 · 698 阅读 · 0 评论 -
Isight RBF和EBF
由于形状函数优化的迭代次数有限,因此可以通过将大问题分解为耦合的小问题来实现更高的精度。例如,五个输入和两个输出的一个近似值和六个输入和一个输出的近似值;个数据点的近似值,但它更像单个正弦波,而不是阶跃函数。由于模型物理可以变化,因此需要不同类型的基函数来提供良好的拟合。椭圆基函数类似于径向基函数,但使用椭圆单位代替径向单位。势流方程是径向基功能。另一组用于计算这些点的径向基函数逼近与实际函数值之间的误差。的值,每个谐波周期约有七个点,可以很好地近似谐波函数。网络的特点是训练速度合理且合理紧凑的网络。原创 2024-10-18 18:40:09 · 969 阅读 · 0 评论 -
什么是神经网络?
神经网络由互连的节点或神经元组成,它们处理数据并从中学习,从而支持机器学习中的模式识别和决策等任务。它由一个输入层、一个或多个隐藏层和一个由耦合的人工神经元层组成的输出层组成。前馈神经网络、递归神经网络 (RNN)、卷积神经网络 (CNN) 和长短期记忆网络 (LSTM) 是常见架构的示例,每种架构都是为特定任务而设计的。神经网络是由处理信息的互连节点(神经元)组成的人工系统,以人脑的结构为模型。递归神经网络 (RNN) 包含的反馈循环使它们能够处理顺序数据,并随着时间的推移捕获依赖关系和上下文。原创 2024-10-19 11:27:13 · 1490 阅读 · 0 评论 -
卷积神经网络(CNN)-池化层-2
卷积神经网络(CNN)-池化层-2原创 2024-10-13 17:50:01 · 717 阅读 · 0 评论 -
人工神经网络(Artificial Neural Networks,简称ANNs)-激活函数-5
神经网络上下文中的激活函数是应用于神经元输出的数学函数。激活函数的目的是在模型中引入非线性,允许网络学习和表示数据中的复杂模式。即使在应用隐藏层之后,这一观察结果也会再次产生线性函数,因此我们可以得出结论,无论我们在神经网络中附加多少个隐藏层,所有层的行为都是相同的,因为。该层的节点不暴露在外部世界,它们是任何神经网络提供的抽象的一部分。在神经网络中,我们将根据输出处的误差更新神经元的权重和偏差。在构建神经网络的过程中,您需要做出的选择之一是在隐藏层和网络的输出层使用什么。本文讨论了神经网络中的激活函数。原创 2024-10-13 11:14:16 · 819 阅读 · 0 评论