
ML – 部署
文章平均质量分 88
Deploying machine learning (ML) models部署
算法资料吧!
算法资料
展开
-
使用 Flask 部署机器学习模型
机器学习是一个广泛用于预测的过程。各种函数库中提供了 N 种算法,可用于预测。在本文中,我们将使用不同的机器学习算法和分类器在历史数据上构建预测模型,绘制结果,并计算模型在测试数据上的准确性。在大型数据集上使用各种算法构建/训练模型是数据的一部分。但是,在不同应用程序中使用这些模型是在现实世界中部署机器学习的第二部分。为了使用它来预测新数据,我们必须将其部署在 Internet 上,以便外部世界可以使用它。在本文中,我们将讨论如何使用 Flask 训练机器学习模型并在其上创建 Web 应用程序。原创 2024-10-27 12:34:19 · 1234 阅读 · 0 评论 -
使用 Streamlit 库部署机器学习模型
它还支持热重载,以便您的应用程序可以在您编辑和保存文件时实时更新。机器学习是目前最值得进入的领域之一,世界各地的顶级公司都在使用它来改进他们的服务和产品。因此,我们需要部署这些模型,以便每个人都可以使用它们。在本文中,我们将首先训练一个鸢尾花物种分类器,然后使用 Streamlit 部署模型,Streamlit 是一个开源应用程序框架,用于轻松部署 ML 模型。因此,首先我们将训练我们的模型。我们不会做太多的预处理,因为本文的主要目的不是制作一个准确的 ML 模型,而是展示它的部署。原创 2024-10-27 12:26:00 · 408 阅读 · 0 评论 -
机器学习部署
生产环境中对于使用户或其他系统能够使用其预测功能至关重要。本指南深入介绍了 ML 模型部署的基本步骤、策略和最佳实践。机器学习部署。原创 2024-10-24 05:15:00 · 743 阅读 · 0 评论