什么是图像识别?

您可能知道机器学习的概念,因为不同的模型是使用一组数据训练的。 图像识别也是机器学习的一种应用。 图像识别是系统理解和解释图像或视频中的视觉信息的能力。本文涵盖了有关现实世界中图像识别的所有详细信息、它的工作原理以及图像识别在计算机科学领域的好处和重要性。只需通读整篇文章,即可深入了解图像识别。

    什么是图像识别

    什么是图像?

    图像是事物在 2 维平面上的视觉表示,包含有关项目、场景等的一些信息。图像通常用像素的 2-D 数组来描述,其中每个像素在计算机和数字技术上下文中都是一个小色点。这些像素的排列和组合会产生图像的这些信息。换句话说,我们可以说图像就像一个文件,其中包含某种可以在某种屏幕上显示或呈现的视觉信息或数据。

    数字图像包含像素,像素是屏幕的最小单位,有助于图像形成。有不同类型的图像格式,如 JPG、JPEG、GIF、PNG 等。图像在数字世界中有自己的作用,包括通信、科学、艺术和技术等各个领域。

    什么是图像识别?

    在进一步讨论之前,如果我让你区分猫和狗,让我们举个例子。人类区分它们就像小菜一碟,但对于计算机来说,很难从图像中识别猫和狗。所以,在这里,图像识别开始发挥作用。

    图像识别本身描述了它的含义。这是从图像中识别或识别某些内容的过程。简单来说,它是软件的一种能力,或者我们可以说,是一个用于识别、检测和分析其周围事物、人物、地点和数字媒体中的一些动作的程序。它用于从它捕获的图像中检测和获取细节或数据,并在没有任何人工监督的情况下自行分析。

    图像识别有多种技术,例如深度学习机器学习方法。一般来说,问题越复杂,您就越有可能想要研究深度学习方法。但是,这将取决于具体的应用程序。卷积神经网络可用于图像识别的深度学习方法,以便从样本照片中自动提取相关特征,并在新图像中识别这些特征。

    人工智能在图像识别中的作用

    AI 和图像识别技术创建了一个基于计算机的系统,该系统根据训练期间先前学习的模式和特征来识别和分类物体和模式。该系统采用复杂的(拥有或展示大量世界经验)算法来分析和解释图片中的视觉内容。

    与计算机视觉的连接

    计算机视觉是一种允许机器自动识别图片并提供精确有效描述的技术。如今,计算机系统可以使用从手机、交通摄像头、安全系统和其他设备生成或获取的大量照片和视频数据。人工智能和机器学习 (AI/ML) 用于计算机视觉应用程序,以正确处理这些数据以进行监控、检测、分类、对象识别和面部识别。

    不同的图像识别技术

    基于深度学习的图像识别

    深度学习涉及用于图像识别的卷积神经网络,以便从样本照片中自动提取相关特征,并在新图像中识别这些特征。

    它涉及以下过程:

    • 数据准备:通过收集一组照片并根据相关类别对它们进行分组来准备训练数据。任何用于提高图片一致性以获得更精确模型的预处理作也可能属于此类别。
    • 开发深度学习模型:最好从预训练模型开始,即使您可以从头开始创建深度学习模型,也可以将其用作应用程序的基础。
    • 训练模型:模型训练需要为模型提供对测试数据的访问权限。在多次检查数据后,模型会自动确定哪些方面对图片最重要。随着训练的进行,该模型将获得更复杂的特征,最终使其能够准确地区分训练集中的各种照片类别。
    • 测试数据:要确定模型认为图像是什么,请使用模型以前从未见过的新数据进行测试。迭代这四个过程,直到如果结果不符合您的预期,则准确性更可接受。
    YOLO (你只看一次)

    YOLO 是“You Only Look Once”的缩写,是一种广泛使用的计算机视觉算法,用于快速发现图像中的对象。YOLO 的特别之处在于,它将图像划分为网格,并直接在这些网格单元中预测对象的位置和类型。这种方法使 YOLO 能够快速高效地实时识别多个对象。YOLO 无需多次查看图像,只需看一眼,因此对监控和自动驾驶汽车等应用非常有效。

    单发检测器 (SSD)

    SSD 是 Single Shot MultiBox Detector 的缩写,是一种智能计算机视觉工具,可快速发现和识别物体。它非常擅长实时执行此作,这意味着它可以跟上快速发生的事情。SSD 的特别之处在于它只需查看一次图像就可以做出准确的预测。这就像快速浏览并立即了解图片中的内容,非常适合识别视频中的对象或监控等任务。

    通过机器学习进行图像识别

    在人工智能图像识别方法中,可以在图片中找到重要特征,提取这些特征,然后将其输入到机器学习模型中。

    • 训练数据:一组照片是起点,它们被分组到相关类别中。
    • Extract attributes(提取属性):选择每张图像的相关属性。为了区分数据中的类,特征提取技术可以提取边缘或拐角特征。
    • 创建机器学习模型:要创建机器学习模型,请向其添加这些特征。该模型将在将特征划分为各自的类别后,使用此信息对新对象进行分类和分析。

    传统图像识别

    除了深度学习和机器学习之外,许多传统的图像处理技术在特定目的的图片识别方面都非常成功。

    • 使用颜色进行图像识别:颜色通常是图片识别的一个非常有用的特性。图像的色相、饱和度和值 (HSV) 或红色、绿色和蓝色 (RGB) 特征可能会揭示有关图像的信息。
    • 模板匹配:此方法使用较小的图像或模板在较大的图像中查找匹配的区域。
    • Blob 分析和图像分割:这些过程使用基本对象属性,包括大小、颜色和形状。

    图像识别的应用

    识别欺诈账户

    检查虚假的社交媒体资料是图像识别最重要的应用之一。您必须意识到,在过去十年中,虚假账户的普遍性有所增加。如今,人们创建虚假身份来宣传虚假新闻、参与互联网欺诈或损害名人的声誉。您应该知道,图像识别算法可以保护您免于成为在线欺诈的受害者。要发现是否有人正在拍摄您的照片并在另一个帐户上使用它们,您可以轻松进行图像搜索。

    面部识别和安全系统

    图像识别也被认为很重要,因为它是安全业务中最关键的组成部分之一。今天,它被用于各种安全系统。图片识别最流行的示例是手机上的面部识别技术。手机中的面部识别现在正被用于商业目的。图像识别算法可以帮助营销人员了解一个人的身份、性别和情绪。

    反向图像搜索

    您可能听说过互联网反向图像搜索。反向照片搜索是一种允许您免费按图搜索的策略。新的反向图像搜索技术允许您搜索图片并查找有关它的有用信息。图像查找器使用人工智能算法和图像识别技术来检测图像内容,并将其与存储在互联网上的数十亿张照片进行比较。图像识别算法有助于识别相似照片、相关图像的来源、有关图像所有者的信息、使用相同图像的网站、图像复制和其他相关数据。

    帮助警察破案

    得知政府机构使用图像识别时,您可能会感到震惊。这些组织搜索照片以获取有关人物的信息。今天,警察和其他秘密组织经常使用图像识别技术来识别录音或照片中的人物。

    为电子商务企业赋能

    如今,图像识别已普遍用于电子商务业务。从历史上看,视觉搜索行业已经显着发展。这一点很重要,因为今天的消费者更喜欢使用照片而不是文字来搜索产品。

    图像识别的挑战和局限性

    • 杂乱无章:在杂乱无章的繁忙背景中识别和定位图像的主要主题可能具有挑战性。分割图像有助于算法“理解”图像并区分事物。
    • 遮挡:依赖于从整体上看到对象的图像识别算法可能会被部分或完全遮挡的对象所混淆。一个可能的答案是开发改进的计算机视觉模型,这些模型能够从部分视图推断整个对象。
    • 透视变化:识别可以从多个视点或角度查看的对象可能具有挑战性。在训练期间扩充数据可以将算法公开给其他视角。
    • 照明不足:算法识别照片中对象的方式可能会受到亮度、阴影和暗区变化的影响。图像标准化可以帮助解决此问题。
    • 数据集中的偏差:当现实世界的多样性没有充分反映在用于模型训练的数据中时,这称为数据集偏差。它是由于特定群体或品质在数据中的代表性过高或代表性不足而发生的,这会产生低于标准的结果。解决此问题并提供必要的系统效率的推荐作方案是仔细的数据集管理。
    • 比例变化:识别和分类事物的能力受摄像机接近带来的项目大小变化的影响。多尺度处理增强了对象检测中使用的算法的性能。

    图像识别的未来趋势

    • AR 和 VR 改进功能:图像识别将增强现实提升到一个新的水平,从而实现非常实时的交互。学生现在可以在课堂上看到超逼真的 3D 表示,包括古代生物和历史人物。同样,虚拟现实显着增强了运动跟踪,允许更逼真的虚拟会议和游戏,在数字世界中具有更好的存在体验。
    • 医疗保健应用扩展:AI 正在改变我们对医疗部门和诊断的看法。图像识别技术使机器能够有效地读取 X 射线和 MRI 等医学扫描,帮助临床医生快速识别疾病、跟踪疾病发展并确定成功的治疗方法。图像识别应用程序还可以增加视力障碍患者的可访问性。
    • 实时图像识别:实时图像识别功能类似于超高速机器人,能够即时识别通过自动驾驶汽车或安全系统的摄像头看到的物体。随着电子产品和软件变得越来越复杂,这种趋势的可能性越来越大。
    • 零售应用:图像识别通过实现服装和化妆品的虚拟试穿、店内购买者行为研究以获得个性化建议以及实时库存管理,实现电子商务和实体零售的转型。未来几年,实体零售商和在线零售商都将见证更大的创新。我们预计会有更快的结账时间、更高效的货架产品搜索和更智能的在线产品发现。

    结论

    图像识别站在技术创新的前沿,弥合了人类感知与人工智能之间的鸿沟。我们见证了一个变革性的时代,机器能够以更高的准确性和效率解释视觉数据。不断发展的图像识别领域不仅增强了计算机视觉等领域的发展,还为从医疗保健到安全的各种应用打开了大门。

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包

    打赏作者

    算法资料吧!

    我会继续分享编程资料,学习资料

    ¥1 ¥2 ¥4 ¥6 ¥10 ¥20
    扫码支付:¥1
    获取中
    扫码支付

    您的余额不足,请更换扫码支付或充值

    打赏作者

    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值